首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Canine distemper virus attachment (hemagglutinin [H] equivalent) and fusion (F) antigens were purified by affinity chromatography with monoclonal antibodies. The purified antigens were used to immunize groups of three dogs. Radioimmune precipitation assays with sera from these animals showed that the F antigen preparation was pure and induced only an F polypeptide-specific antibody response but that the H antigen preparation had a slight contamination by the F antigen. Immunized animals were challenged with virulent canine distemper virus. Two animals in each group developed pronounced humoral and cellular immune responses after challenge. Among these infected animals, only the dogs immunized with H antigen developed symptoms, albeit mild. In contrast, three nonimmunized control animals developed severe disease, with a fatal outcome in two cases. The complete resistance against challenge in two dogs was interpreted to reflect in one case anti-F immunity and in the other case most likely a high level of anti-H immunity. It is suggested that the F antigen may be of particular interest for the development of morbillivirus and possibly other paramyxovirus subunit or synthetic vaccines, because it can induce immunity capable of blocking virus infection and in situations of virus replication prevent the emergence of symptoms.  相似文献   

2.
In recent years, associations of particular factors of the human leukocyte antigen (HLA) system with two major infectious diseases of tropical countries have been recognized: common West African HLA antigens are associated with protection from severe Plasmodium falciparum malaria, and HLA-D alleles are associated with generalized disease, localized disease and putative immunity in Onchocerca volvulus infection. Here, Christian Meyer and Peter Kremsner summarize current information on the involvement of HLA factors in P. falciparum malaria and O. volvulus infection, and briefly report on HLA-related immunological characteristics of various conditions in these infectious diseases.  相似文献   

3.
Toxoplasma gondii is responsible for fetopathy in farm animals and humans and severe disease in immunocompromised individuals (i.e. AIDS patients). Effective vaccines, inducing protective and long-lasting immunity to this global parasite, are still desired. In the work, we evaluated the immunogenic and immunoprotective activity of Escherichia coli chimeric Dr fimbriae bearing selected antigenic epitopes of three T. gondii antigens (SAG1, GRA1 and MAG1), in comparison with conventional recombinant antigens obtained in E. coli expression system. Our data demonstrate a very high protective efficacy of recombinant antigens supplemented with Freund's adjuvants, whereas chimeric Dr fimbriae as a vaccine proved non-protective. The recombinant antigen vaccine induced a strong specific antibody response and prevented the brain cysts formation by 89%. The results are promising and should be confirmed in further study on farm animals by use of less aggressive than Freund's adjuvant preparations.  相似文献   

4.
Filariasis is a widespread tropical disease caused by a group of nematode parasites that can survive for many years in immunocompetent hosts. The paradox of filariasis has always been the inverse association between parasite density, in terms of circulating microfilariae in the blood, and severe pathology. In this review, Rick Maizels and Rachel Lawrence argue that microfilariae and adult parasites induce a form of immunological tolerance which prevents both parasite elimination and progression to disease. The breakdown of this unresponsiveness is seen as the critical step towards pathogenesis. However, not every exposed individual progresses through infection to disease. The authors discuss evidence for protective immunity acting on antigens from the mosquito-borne infective larva, and propose that this stage represents a vulnerable target outside the scope of tolerance and pathogenesis. Stage-specific larval antigens, to which asymptomatic hosts are known to respond, may therefore represent the most effective and safe choice for an anti filarial vaccine.  相似文献   

5.
Cryptogenic fibrosing alveolitis (CFA) is a severe autoimmune disease of unclear etiology and prognostically unfavorable. The complexity of the diagnostics of this disease makes it necessary to search for new methods; for this reason immunity in CFA patients must be studied. The study of humoral organ-specific, organ-unspecific and antibacterial immunity of CFA patients revealed that the latter differed from the members of the groups used for comparison by a higher frequency of positive reactions in EIA determinations of IgG antibodies to cytokeratin-8 and Moraxella catarrhalis antigens. In addition, only in CFA patients a high degree of correlation (r=0.88) between these results was established. This made it possible to propose to use these reactions for confirming the diagnosis of CFA and suggested the probable role of M. catarrhalis in triggering autoimmune reactions characteristic of this disease.  相似文献   

6.
Malaria can be a very severe disease, particularly in young children, pregnant women (mostly in primipara), and malaria na?ve adults, and currently ranks among the most prevalent infections in tropical and subtropical areas throughout the world. The widespread occurrence and the increased incidence of malaria in many countries, caused by drug-resistant parasites (Plasmodium falciparum and P. vivax) and insecticide-resistant vectors (Anopheles mosquitoes), indicate the need to develop new methods of controlling this disease. Experimental vaccination with irradiated sporozoites can protect animals and humans against the disease, demonstrating the feasibility of developing an effective malaria vaccine. However, developing a universally effective, long lasting vaccine against this parasitic disease has been a difficult task, due to several problems. One difficulty stems from the complexity of the parasite's life cycle. During their life cycle, malaria parasites change their residence within the host, thus avoiding being re-exposed to the same immunological environment. These parasites also possess some distinct antigens, present at different life stages of the parasite, the so-called stage-specific antigens. While some of the stage-specific antigens can induce protective immune responses in the host, these responses are usually genetically restricted, this being another reason for delaying the development of a universally effective vaccine. The stage-specific antigens must be used as immunogens and introduced into the host by using a delivery system that should efficiently induce protective responses against the respective stages. Here we review several research approaches aimed at inducing protective anti-malaria immunity, overcoming the difficulties described above.  相似文献   

7.
Schistosoma spp.: progress toward a defined vaccine   总被引:1,自引:0,他引:1  
During the last 2 decades, much was learned concerning the nature of acquired immunity in schistosomiasis, under experimental as well as field conditions. The knowledge is being applied now to design of a defined vaccine against this major parasitic disease. Several Schistosoma spp. antigens have been purified and shown to potentially protect in vivo. Determination of a method for presenting these antigens that will induce an optimal combination of cellular and humoral immune responses remains a critical step in vaccine development.  相似文献   

8.
Despite the great effort that has been given to control the disease, schistosomiasis remains the most important human helminth infection in terms of morbidity and mortality. Natural infection of schistosomes induces very little protective immunity against reinfection. Moreover, effective schistosome vaccines for practical use have not been developed. These parasites appear to have evolved highly effective modulatory mechanisms on their host's immune system that promote the parasites' survival and also hinder the development of effective strategies for treatment of the disease. Understanding of the mechanisms of schistosome-mediated immune modulation would be most helpful in schistosomiasis prevention and control. Previously, we have identified from Schistosoma japonicum an anti-inflammatory protein, Sj16, which suppresses thioglycollate-induced peritoneal inflammation in BALB/c mice, as well as thioglycollate-mediated peritoneal macrophage maturation, while modulating cytokine and chemokine production from peritoneal cells. In the present study, we have further investigated the modulatory effect of Sj16 on the host's adaptive immunity to heterologous antigens with the use of recombinant Sj16 (rSj16) expressed and purified from Escherichia coli . Results from this study indicate that rSj16 significantly suppresses antibody production, in addition to Th1 and Th2 responses to heterologous antigens in the BALB/c mouse model. Our study also reveals that rSj16 suppresses lipopolysaccharide-induced major histocompatibility complex II expression and IL-12 production, while increasing IL-10 production in resident peritoneal macrophages. These results may partially explain why parasite-related antigens cannot mount a protective immunity during early stages of schistosome infection.  相似文献   

9.
Malaria is a vector-borne infectious disease caused by infection with eukaryotic pathogens termed Plasmodium. Epidemiological hallmarks of Plasmodium falciparum malaria are continuous re-infections, over which time the human host may experience several clinical malaria episodes, slow acquisition of partial protection against infection, and its partial decay upon migration away from endemic regions. To overcome the exposure-dependence of naturally acquired immunity and rapidly elicit robust long-term protection are ultimate goals of malaria vaccine development. However, cellular and molecular correlates of naturally acquired immunity against either parasite infection or malarial disease remain elusive. Sero-epidemiological studies consistently suggest that acquired immunity is primarily directed against the asexual blood stages. Here, we review available data on the relationship between immune responses against the Anopheles mosquito-transmitted sporozoite and exo-erythrocytic liver stages and the incidence of malaria. We discuss current limitations and research opportunities, including the identification of additional sporozoite antigens and the use of systematic immune profiling and functional studies in longitudinal cohorts to look for pre-erythrocytic signatures of naturally acquired immunity.  相似文献   

10.
The tick-transmitted apicomplexan parasites Babesia bovis and B. bigemina cause significant disease in cattle in many tropical and temperate areas of the world. These parasites present a challenge for vaccine development, and yet provide a system for studying the pathogenesis, mechanisms of protective immunity and regulation of host immune responses associated with intraerythrocytic protozoan parasites in a non-rodent species. In this article, Wendy Brown and Guy Palmer review strategies for identifying candidate vaccine antigens of B. bovis and B. bigemina and for priming immune responses to evoke strain crossprotective immunity.  相似文献   

11.
The use of vaccinia virus for the construction of recombinant vaccines   总被引:1,自引:0,他引:1  
Recombinant DNA technology has been used to engineer vaccinia virus genetically into a eukaryotic expression vector. An exciting outcome of these gene-splicing techniques is that after the insertion of one or more genes which encode the information for antigens responsible for conferring immunity toward an infectious disease, vaccinia can be adapted for the development of live recombinant vaccines. This review discusses recombinant vaccinia design and the feasibility of using these vaccines for disease protection.  相似文献   

12.
A recently proposed mechanism of protection for haemoglobin C (HbC; beta6Glu-->Lys) links an abnormal display of PfEMP1, an antigen involved in malaria pathogenesis, on the surface of HbC infected erythrocytes together with the observation of reduced cytoadhesion of parasitized erythrocytes and impaired rosetting in vitro. We investigated the impact of this hypothesis on the development of acquired immunity against Plasmodium falciparum variant surface antigens (VSA) encoding PfEMP1 in HbC in comparison with HbA and HbS carriers of Burkina Faso. We measured: i) total IgG against a single VSA, A4U, and against a panel of VSA from severe malaria cases in human sera from urban and rural areas of Burkina Faso of different haemoglobin genotypes (CC, AC, AS, SC, SS); ii) total IgG against recombinant proteins of P. falciparum asexual sporozoite, blood stage antigens, and parasite schizont extract; iii) total IgG against tetanus toxoid. Results showed that the reported abnormal cell-surface display of PfEMP1 on HbC infected erythrocytes observed in vitro is not associated to lower anti- PfEMP1 response in vivo. Higher immune response against the VSA panel and malaria antigens were observed in all adaptive genotypes containing at least one allelic variant HbC or HbS in the low transmission urban area whereas no differences were detected in the high transmission rural area. In both contexts the response against tetanus toxoid was not influenced by the beta-globin genotype. These findings suggest that both HbC and HbS affect the early development of naturally acquired immunity against malaria. The enhanced immune reactivity in both HbC and HbS carriers supports the hypothesis that the protection against malaria of these adaptive genotypes might be at least partially mediated by acquired immunity against malaria.  相似文献   

13.
《Cytotherapy》2014,16(10):1325-1335
Immunosuppression of patients after hematopoietic stem cell or kidney transplantation potentially leads to reactivation of JC and BK polyomaviruses. In hematopoietic stem cell transplantation, the reactivation rate of BKV can be up to 60%, resulting in severe complications of the urogenital tract, particularly hemorrhagic cystitis and renal dysfunction. After kidney transplantation, BKV reactivation can cause a loss of the graft. JCV can cause progressive multifocal leukoencephalopathy, a lethal disease. Adoptive transfer of donor-derived polyomavirus-specific T cells is an attractive and promising treatment that restores virus-specific cellular immunity. Pioneering work in the early 1990s on the reconstitution of cellular immunity against cytomegalovirus and recent development in the field of monitoring and isolation of antigen-specific T cells paved the way toward a personalized T-cell therapy. Multimer technology and magnetic beads are available to produce untouched T cells in a single-step, good manufacturing practice–compliant procedure. Another exciting aspect of T-cell therapy against polyomaviruses is the fact that both JCV and BKV can be targeted simultaneously because of their high sequence homology. Finally, “designer T cells” can be redirected to recognize polyomavirus antigens with high-affinity T-cell receptors. This review summarizes the state-of-the art technologies and gives an outlook of future developments in the field.  相似文献   

14.
The adoptive transfer of cytotoxic T lymphocytes (CTLs) derived from tumor-infiltrating lymphocytes (TIL) along with interleukin 2 (IL-2) into autologous patients with cancer resulted in the objective regression of tumor, indicating that these CTLs recognized cancer rejection antigens on tumor cells. To understand the molecular basis of T cell-mediated antitumor immunity, several groups started to search for such tumor antigens in melanoma as well as in other types of cancers. This led to the subject I will review in this article. A number of tumor antigens were isolated by the use of cDNA expression systems and biochemical approaches. These tumor antigens could be classified into several categories: tissue-specific differentiation antigens, tumor-specific shared antigens, and tumor-specific unique antigens. However, the majority of tumor antigens identified to date are nonmutated, self proteins. This raises important questions regarding the mechanism of antitumor activity and autoimmune disease. The identification of human tumor rejection antigens provides new opportunities for the development of therapeutic strategies against cancer. This review will summarize the current status and progress toward identifying human tumor antigens and their potential applications to cancer treatment.  相似文献   

15.
Human onchocerciasis is a neglected tropical disease caused by Onchocerca volvulus and an important cause of blindness and chronic disability in the developing world. Although mass drug administration of ivermectin has had a profound effect on control of the disease, additional tools are critically needed including the need for a vaccine against onchocerciasis. The objectives of the present study were to: (i) select antigens with known vaccine pedigrees as components of a vaccine; (ii) produce the selected vaccine antigens under controlled conditions, using two expression systems and in one laboratory and (iii) evaluate their vaccine efficacy using a single immunisation protocol in mice. In addition, we tested the hypothesis that joining protective antigens as a fusion protein or in combination, into a multivalent vaccine, would improve the ability of the vaccine to induce protective immunity. Out of eight vaccine candidates tested in this study, Ov-103, Ov-RAL-2 and Ov-CPI-2M were shown to reproducibly induce protective immunity when administered individually, as fusion proteins or in combination. Although there was no increase in the level of protective immunity induced by combining the antigens into one vaccine, these antigens remain strong candidates for inclusion in a vaccine to control onchocerciasis in humans.  相似文献   

16.
D. B. Shires  G. Duncan 《CMAJ》1978,118(4):343-344
In a previously healthy 13-year-old girl with disseminated blastomycosis, immunodeficiency was considered because of lymphopenia and the slow response of her lung disease to therapy with amphotericin B. Cellular immunity was found to be profoundly impaired, with absent delayed cutaneous hypersensitivity to several common antigens, a decreased count of thymus-dependent lymphocytes in the peripheral blood and a greatly diminished in-vitro proliferative response of lymphocytes to phytohemagglutinin (PHA). Humoral immunity was intact. Two additional types of therapy were assessed: subcutaneous injection of transfer factor was associated with an unsustained increase in lymphocyte counts and a positive cutaneous response to PHA but no clinical change; parenteral alimentation to ensure an adequate energy intake was associated with rapid clinical improvement, the development of delayed hypersensitivity to four additional antigens, and the return of lymphocyte counts and proliferative response to normal. These findings suggest that increased energy intake rather than transfer factor therapy was responsible for the child''s recovery, and they emphasize the importance of adequate nutrition in the maintenance of intact cellular immunity.  相似文献   

17.
The mechanisms of protective immunity to parasite infections in humans are still elusive. Here, Woolhouse and Hagan discuss new evidence suggesting that the extremely slow development of acquired immunity to human schistosomes may depend on exposure to antigens from these worms after they die.  相似文献   

18.
Annual deaths in infants and young children due to rotavirus (RV) infection are around 100,000 in India and about 600,000 globally. Development of a vaccine for this disease is a high priority. The protective mechanisms for RV diarrhea in human are not fully understood, but it is known that children develop natural immunity against RV. Early exposure to RV results in most severe episode of diarrhea and subsequent infections are milder or asymptomatic. Of the immune responses measured during natural infection, RV-specific antibodies have been well documented, whereas data on cellular immunity in humans are sparse. It is generally thought that two outer capsid proteins VP4 and VP7 play a critical role in protective immunity by stimulating production of neutralizing antibodies. While serotype- specific protection mediated by antibodies directed against the outer capsid proteins may be a mechanism of protection, such a correlate for protection has been difficult to demonstrate in humans during clinical trials. Increasing evidences suggest that viral proteins that lack a capacity of eliciting neutralizing antibody response also induce protective immunity. Limited efforts have focused on the role of non-structural proteins in protective immunity. This review describes current understanding of antibody responses in children with focus on responses specific to viral antigens with their possible role in protective immunity. We have also briefly reviewed the responses elicited to non-antibody effectors during RV infection in human subjects.  相似文献   

19.
In areas of endemic parasite transmission, protective immunity to Plasmodium falciparum malaria is acquired over several years with numerous disease episodes. Acquisition of Abs to parasite-encoded variant surface Ags (VSA) on the infected erythrocyte membrane is important in the development of immunity, as disease-causing parasites appear to be those not controlled by preexisting VSA-specific Abs. In this work we report that VSA expressed by parasites from young Ghanaian children with P. falciparum malaria were commonly and strongly recognized by plasma Abs from healthy children in the same area, whereas recognition of VSA expressed by parasites from older children was weaker and less frequent. Independent of this, parasites isolated from children with severe malaria (cerebral malaria and severe anemia) were better recognized by VSA-specific plasma Abs than parasites obtained from children with nonsevere disease. This was not due to a higher infection multiplicity in younger patients or in patients with severe disease. Our data suggest that acquisition of VSA-specific Ab responses gradually restricts the VSA repertoire that is compatible with parasite survival in the semi-immune host. This appears to limit the risk of severe disease by discriminating against the expression of VSA likely to cause life-threatening complications, such as cerebral malaria and severe anemia. Such VSA seem to be preferred by parasites infecting a nonimmune host, suggesting that VSA expression and switching are not random, and that the VSA expression pattern is modulated by immunity. This opens the possibility of developing morbidity-reducing vaccines targeting a limited subset of common and particularly virulent VSA.  相似文献   

20.
History shows that vaccines are most easily developed for those organisms that induce natural immunity after a single infection. For malaria, partial antiparasite immunity develops only after several years of endemic exposure. Evidence suggests that this inefficient induction of immunity is partly a result of antigenic polymorphism, poor immunogenicity of individual antigens, the ability of the parasite to interfere with the development of immune responses and to cause apoptosis of effector and memory T and B cells, and the interaction of maternal and neonatal immunity. Vaccine strategies that are likely to be ultimately successful are those that combine many antigens to induce a maximal response to protective determinants that might not be normally recognized following normal infection of naive individuals. Whole organismal approaches and the use of ultra-low doses of antigens have shown success in human and animal studies by inducing enhanced immune responses to multiple antigens. These, and related hypervalent subunit approaches, could lead to a viable vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号