首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron holes are known to migrate along the DNA or RNA duplexes and to localize preferentially on successive guanines. The stationary point conformations of Gua pairs that can trap or let pass these holes have been characterized by quantum chemistry calculations. Here we show their recurrent occurrence in DNA and RNA X-ray structures, often in quadruplex conformations or in interaction with proteins, ligands or metal ions. These findings give support to the biological, possibly regulatory, roles of charge migration in cell functioning.  相似文献   

2.
We combined atomistic molecular-dynamics simulations with quantum-mechanical calculations to investigate the sequence dependence of the stretching behavior of duplex DNA. Our combined quantum-mechanical/molecular-mechanical approach demonstrates that molecular-mechanical force fields are able to describe both the backbone and base-base interactions within the highly distorted nucleic acid structures produced by stretching the DNA from the 5′ ends, which include conformations containing disassociated basepairs, just as well as these force fields describe relaxed DNA conformations. The molecular-dynamics simulations indicate that the force-induced melting pathway is sequence-dependent and is influenced by the availability of noncanonical hydrogen-bond interactions that can assist the disassociation of the DNA basepairs. The biological implications of these results are discussed.  相似文献   

3.
Abstract

Electron holes are known to migrate along the DNA or RNA duplexes and to localize preferentially on successive guanines. The stationary point conformations of Gua pairs that can trap or let pass these holes have been characterized by quantum chemistry calculations. Here we show their recurrent occurrence in DNA and RNA X-ray structures, often in quadruplex conformations or in interaction with proteins, ligands or metal ions. These findings give support to the biological, possibly regulatory, roles of charge migration in cell functioning.  相似文献   

4.
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequences in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. The affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.  相似文献   

5.
The potent mutagen/carcinogen benzo[a]pyrene (B[a]P) is metabolically activated to (+)-anti-B[a]PDE, which induces a full spectrum of mutations (e.g. GC-->TA, GC-->AT, etc.). One hypothesis for this complexity is that different mutations are induced by different conformations of its major adduct [+ta]-B[a]P-N2-dG when bypassed during DNA replication (probably by different DNA polymerases). Previous molecular modeling studies suggested that B[a]P-N2-dG adducts can in principle adopt at least 16 potential conformational classes in ds-DNA. Herein we report on molecular modeling studies with the eight conformations most likely to be relevant to base substitution mutagenesis in 10 cases where mutagenesis has been studied in ds-DNA plasmids in E. coli with B[a]P-N2-dG adducts of differing stereoisomers and DNA sequence contexts, as well as in five cases where the conformation is known by NMR. Of the approximately 11,000 structures generated in this study, the computed lowest energy structures are reported for 120 cases (i.e. eight conformations and 15 examples), and their conformations compared. Of the eight conformations, four are virtually always computed to be high in energy. The remaining four lower energy conformations include two with the BP moiety in the minor groove (designated: BPmi5 and BPmi3), and two base-displaced conformations, one with the dG moiety in the major groove (designated: Gma5) and one with the dG in the minor groove (designated: Gmi3). Interestingly, these four are the only conformations that have been observed for B[a]P-N2-dG adducts in NMR studies. Independent of sequence contexts and adduct stereochemistry, BPmi5 structures tend to look reasonably similar, as do BPmi3 structures, while the base-displaced structures Gma5 and BPmi3 tend to show greater variability in structure. A correlation was sought between modeling and mutagenesis results in the case of the low energy conformations BPmi5, BPmi3, Gma5 and Gma3. Plots of log[(G-->T)/(G-->A)] versus energy[(conformation X)-(conformation Y)] were constructed for all six pairwise combinations of these four conformations, and the only plot giving a straight line involved Gma5 and Gmi3. While this finding is striking, its significance is unclear (as discussed).  相似文献   

6.
The binding properties of five G-quadruplex oligonucleotides (humtel24, k-ras32, c-myc22, c-kit1 and c-kit2) with polyamines have been investigated by electrospray ionization-quadrupole time of flight mass spectrometry, circular dichroism, melting temperature, atomic force microscopy (AFM) and molecular simulation. The MS results demonstrated that the polyamines and G-quadruplex DNA can form complexes with high affinity, and one molecule of G-quadruplex DNA can combine several molecules (1–5) of polyamines. The binding affinities of the polyamines to DNA were in the order of spermine > spermidine > putrescine. After binding with polyamines, the conformations of the G-quadruplex DNA were significantly changed, and spermine can induce the configurations of k-ras32 and c-kit1 to deviate from their G-quadruplex structures at high concentrations. In the presence of K+, the conformations of G-quadruplex DNA were stabilized, while polyamines can also induced alterations of their configurations. Melting temperature experiments suggested that the Tm of the DNA–polyamine complexes obviously increased both in the absence and presence of K+. The AFM results indicated that polyamines can induce aggregation of G-quadruplex DNA. Above results illustrated that the polyamines bound with the phosphate backbone and the base-pairs of G-quadruplex structures. Combining with the molecular simulation, the binding mode of the G-quadruplex DNA and polyamines were discussed. The results obtained would be beneficial for understanding the biological and physiological functions of polyamines and provide useful information for development of antitumor drugs.  相似文献   

7.
8.
DNA-RNA hybrid secondary structures   总被引:10,自引:0,他引:10  
DNA-RNA and DNA-DNA duplexes are even more polymorphic than observed previously. DNA-RNA hybrids can have secondary structures like A-DNA or A-RNA, but double helices of the synthetic DNA-RNA hybrids poly(dA) X poly(rU) and poly(dI) X poly(rC), respectively, form 11-fold and 10-fold double-helical structures in which the two chains have quite different conformations. Extensive X-ray fiber diffraction analyses show that in both structures the DNA chains have C-2'-endo-puckered furanose rings, while the anti-parallel RNA chains have C-3'-endo-puckered rings. The bidirectional properties of such duplexes may be important in the transfer of biological information from nucleic acids.  相似文献   

9.
Recently we developed methods for the construction of knowledge-based mean fields from a data base of known protein structures. As shown previously, this approach can be used to calculate ensembles of probable conformations for short fragments of polypeptide chains. Here we develop procedures for the assembly of short fragments to complete three-dimensional models of polypeptide chains. The amino acid sequence of a given protein is decomposed into all possible overlapping fragments of a given length, and an ensemble of probable conformations is calculated for each fragment. The fragments are assembled to a complete model by choosing appropriate conformations from the individual ensembles and by averaging over equivalent angles. Finally a consistent model is obtained by rebuilding the conformation from the average angles. From the average angles the local variability of the structure can be calculated, which is a useful criterion for the reliability of the model. The procedure is applied to the calculation of the local backbone conformations of myoglobin and lysozyme whose structures have been solved by X-ray analysis and thymosin beta 4, a polypeptide of 43 amino acid residues whose structure was recently investigated by NMR spectroscopy. We demonstrate that substantial fractions of the calculated local backbone conformations are similar to the experimentally determined structures.  相似文献   

10.
I-motif DNA, which can fold and unfold reversibly in various environments, plays a significant role in DNA nanotechnology and biological functions. Thus, it is of fundamental importance to identify the different conformations of i-motif DNA. Here, we demonstrate that distinct structures of i-motif DNA conjugated to polystyrene spheres can be distinguished through tunable resistive pulse sensing technique. When dispersed in acidic buffer, i-motif DNA coating on polystyrene spheres would fold into quadruplex structure and subsequently induce an apparent increase in the translocation duration time upon passing through a nanopore due to the shielding effect of the surface charge of the nanospheres. However, if the DNA strands don't have conformational changes in acidic buffer, little shift can be observed in the translocation duration time of the DNA functionalized polystyrene spheres. A before-and-after assay was also performed to illustrate the fast speed of i-motif DNA folding using this technique. The successful implementation of tunable resistive pulse sensing to monitor the conformational transition of i-motif DNA provides a potential tool to detect the structural changes of DNA and an alternative approach to study the function of DNA structures.  相似文献   

11.
12.
13.
14.
The classical approaches for protein structure prediction rely either on homology of the protein sequence with a template structure or on ab initio calculations for energy minimization. These methods suffer from disadvantages such as the lack of availability of homologous template structures or intractably large conformational search space, respectively. The recently proposed fragment library based approaches first predict the local structures,which can be used in conjunction with the classical approaches of protein structure prediction. The accuracy of the predictions is dependent on the quality of the fragment library. In this work, we have constructed a library of local conformation classes purely based on geometric similarity. The local conformations are represented using Geometric Invariants, properties that remain unchanged under transformations such as translation and rotation, followed by dimension reduction via principal component analysis. The local conformations are then modeled as a mixture of Gaussian probability distribution functions (PDF). Each one of the Gaussian PDF's corresponds to a conformational class with the centroid representing the average structure of that class. We find 46 classes when we use an octapeptide as a unit of local conformation. The protein 3-D structure can now be described as a sequence of local conformational classes. Further, it was of interest to see whether the local conformations can be predicted from the amino acid sequences. To that end,we have analyzed the correlation between sequence features and the conformational classes.  相似文献   

15.
We have considered hydrophobic interactions among aliphatic hydrocarbon groups in A/T sequences. The slightly overwound sequences (T)n.(A)n yield structures with tightly stacked methyl groups along one side of the major groove. The sequence TTAA may yield a sharp bend by folding together the two pairs of stacked methyls on the opposite sides of the major groove. Thus the sequence can affect the formation of either a smooth bend or a sharp kink. These sequence dependent local conformations may be related to a number of biological results.  相似文献   

16.
The ribose protons of 13 trinucleoside bisphosphates (trimers) were studied, using 360-MHz proton nuclear magnetic resonance spectroscopy. Complete assignments and analyses of the NMR signals of these protons were carried out by the methods of homonuclear decoupling and computer line-shape simulations. It was shown that the trinucleotides preferred the anti, 3' endo, gamma +, beta t and epsilon t/epsilon- conformations for the glycosidic torsions, the ribose rings, the C4'-C5' bonds, the C5'-O5' bonds, and the C3'-O3' bonds, respectively. It was also found that the trimers, especially those which had noticeable population of 'bulged' structures, did not necessarily have a higher population of these preferred local conformations than their component dimers. The overall conformations of the trinucleotides are classified into two categories. The conformations in the first category involve the nearest-neighbor interactions. Each dinucleotide moiety can assume one of the four stable conformations (I, I', II and III) or the open forms of dinucleoside monophosphates. However, due to steric hindrance, there are only four cases in which both dinucleotide moieties can assume one of the four stable conformations at the same time. These four combinations of conformations are I-I, I'-I', I-II and III-I', where the first Roman numeral represents the conformation of the NpN'p-moiety and the second one, that of the -pN'pN' moiety of the trimers. Among them, I-I and I'-I' are helical structures, capable of forming a double helix. The second category contains conformations with bulged structures which have the two dinucleotide moieties in open forms (i.e. no nearest-neighbor interactions) and the bases of the two terminal residues stacking on each other while the middle residue is bulged out. These bulged conformations may serve as structural models for frame-shift mutations.  相似文献   

17.
Mustafa Tekpinar  Wenjun Zheng 《Proteins》2010,78(11):2469-2481
The decryption of sequence of structural events during protein conformational transitions is essential to a detailed understanding of molecular functions ofvarious biological nanomachines. Coarse‐grained models have proven useful by allowing highly efficient simulations of protein conformational dynamics. By combining two coarse‐grained elastic network models constructed based on the beginning and end conformations of a transition, we have developed an interpolated elastic network model to generate a transition pathway between the two protein conformations. For validation, we have predicted the order of local and global conformational changes during key ATP‐driven transitions in three important biological nanomachines (myosin, F1 ATPase and chaperonin GroEL). We have found that the local conformational change associated with the closing of active site precedes the global conformational change leading to mechanical motions. Our finding is in good agreement with the distribution of intermediate experimental structures, and it supports the importance of local motions at active site to drive or gate various conformational transitions underlying the workings of a diverse range of biological nanomachines. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
A statistical-mechanical model is suggested that makes it possible to describe the B-Z transition in DNA with an arbitrary sequence of nucleotides. The key point consists in allowance for the fact that each base pair can assume one of the two states with different energies. One of these states corresponds to the standard Z-form with purines in the syn conformation and pyrimidines in the anti conformation. However, in natural DNA sequences such standard base-pair conformations should be interrupted by energetically unfavorable conformations (syn for pyrimidines and anti for purines). Open regions and cruciform structures are also allowed for in the model. The probabilities of formation of the Z-form stretches, open regions and cruciform structures have been calculated for different values of parameters for pBR322 and pAO3 DNA.  相似文献   

19.
Genome integrity is essential for proper cell function such that genetic instability can result in cellular dysfunction and disease. Mutations in the human genome are not random, and occur more frequently at “hotspot” regions that often co-localize with sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures. Non-B DNA-forming sequences are mutagenic, can stimulate the formation of DNA double-strand breaks, and are highly enriched at mutation hotspots in human cancer genomes. Thus, small molecules that can modulate the conformations of these structure-forming sequences may prove beneficial in the prevention and/or treatment of genetic diseases. Further, the development of molecular probes to interrogate the roles of non-B DNA structures in modulating DNA function, such as genetic instability in cancer etiology are warranted. Here, we discuss reported non-B DNA stabilizers, destabilizers, and probes, recent assays to identify ligands, and the potential biological applications of these DNA structure-modulating molecules.  相似文献   

20.
In living cells protein-DNA interactions are fundamental processes. Here, we compare the 3D structures of several DNA-binding proteins frequently determined with and without attached DNA. We studied the global structure (backbone-traces) as well as the local structure (binding sites) by comparing pair-wise the related atoms. The DNA-interaction sites of uncomplexed proteins show conspicuously high local structural flexibility. Binding to DNA results in specific local conformations, which are clearly distinct from the unbound states. The adaptation of the protein's binding site to DNA can never be described by the lock and key model but in all cases by the induced fit model. Conformational changes in the seven protein backbone traces take place in different ways. Two of them dock onto DNA without a significant change, while the other five proteins are characterized by a backbone conformation change caused by DNA docking. In the case of three proteins of the latter group the DNA-complexed conformation also occurs in a few uncomplexed structures. This behavior can be described by a conformational ensemble, which is narrowed down by DNA docking until only one single DNA-complexed conformation occurs. Different docking models are discussed and each of the seven proteins is assigned to one of them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号