首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of MTP expression in developing swine   总被引:2,自引:0,他引:2  
To define the developmental expression of microsomal triglyceride transfer protein (MTP) large subunit mRNA and protein, samples of small intestine and liver were collected from 40-day gestation fetal, 2-day-old newborn, 3-week-old suckling, and 2-month-old weanling swine. In fetal animals, MTP mRNA expression was high in intestine and liver. Postnatally, jejunal expression paralleled the intake of a high-fat breast milk diet and declined after weaning. Ileal expression was comparable with that of jejunum in 2-day-old animals, but declined to low levels afterward. Hepatic expression declined postnatally and remained low. MTP protein expression generally paralleled mRNA expression, except in fetal intestine in which no 97 kDa protein was detected. In 2-day-old piglets, a high-triacylglycerol diet increased jejunal and ileal MTP mRNA levels, as compared to a low-triacylglycerol diet. To test the roles of glucocorticoids and fatty acids in MTP regulation, a newborn swine enterocyte cell line (IPEC-1) was used. Except at day 2 of differentiation, dexamethasone did not influence MTP expression. Fatty acids either up-regulated or down-regulated MTP expression, depending on the specific fatty acid and duration of exposure. Although programmed genetic cues regulate MTP expression during development, clearly the amount and fatty acid composition of dietary lipid also play regulatory roles.  相似文献   

2.
3.
Insulin resistance in skeletal muscle and heart plays a major role in the development of type 2 diabetes and diabetic heart failure and may be causally associated with altered lipid metabolism. Hormone-sensitive lipase (HSL) is a rate-determining enzyme in the hydrolysis of triglyceride in adipocytes, and HSL-deficient mice have reduced circulating fatty acids and are resistant to diet-induced obesity. To determine the metabolic role of HSL, we examined the changes in tissue-specific insulin action and glucose metabolism in vivo during hyperinsulinemic euglycemic clamps after 3 wk of high-fat or normal chow diet in awake, HSL-deficient (HSL-KO) mice. On normal diet, HSL-KO mice showed a twofold increase in hepatic insulin action but a 40% decrease in insulin-stimulated cardiac glucose uptake compared with wild-type littermates. High-fat feeding caused a similar increase in whole body fat mass in both groups of mice. Insulin-stimulated glucose uptake was reduced by 50-80% in skeletal muscle and heart of wild-type mice after high-fat feeding. In contrast, HSL-KO mice were protected from diet-induced insulin resistance in skeletal muscle and heart, and these effects were associated with reduced intramuscular triglyceride and fatty acyl-CoA levels in the fat-fed HSL-KO mice. Overall, these findings demonstrate the important role of HSL on skeletal muscle, heart, and liver glucose metabolism.  相似文献   

4.
Kenerson HL  Yeh MM  Yeung RS 《PloS one》2011,6(3):e18075
Non-alcoholic fatty liver disease (NAFLD) is causally linked to type 2 diabetes, insulin resistance and dyslipidemia. In a normal liver, insulin suppresses gluconeogenesis and promotes lipogenesis. In type 2 diabetes, the liver exhibits selective insulin resistance by failing to inhibit hepatic glucose production while maintaining triglyceride synthesis. Evidence suggests that the insulin pathway bifurcates downstream of Akt to regulate these two processes. Specifically, mTORC1 has been implicated in lipogenesis, but its role on hepatic steatosis has not been examined. Here, we generated mice with hepatocyte-specific deletion of Tsc1 to study the effects of constitutive mTORC1 activation in the liver. These mice developed normally but displayed mild hepatomegaly and insulin resistance without obesity. Unexpectedly, the Tsc1-null livers showed minimal signs of steatosis even under high-fat diet condition. This 'resistant' phenotype was reversed by rapamycin and could be overcome by the expression of Myr-Akt. Moreover, rapamycin failed to reduce hepatic triglyceride levels in models of steatosis secondary to Pten ablation in hepatocytes or high-fat diet in wild-type mice. These observations suggest that mTORC1 is neither necessary nor sufficient for steatosis. Instead, Akt and mTORC1 have opposing effects on hepatic lipid accumulation such that mTORC1 protects against diet-induced steatosis. Specifically, mTORC1 activity induces a metabolic shift towards fat utilization and glucose production in the liver. These findings provide novel insights into the role of mTORC1 in hepatic lipid metabolism.  相似文献   

5.
Adiponectin and its receptors have been demonstrated to play important roles in regulating glucose and lipid metabolism in mice. Obesity, type II diabetes and cardiovascular disease are highly correlated with down-regulated adiponectin signaling. In this study, we generated mice overexpressing the porcine Adipor1 transgene (pAdipor1) to study its beneficial effects in metabolic syndromes as expressed in diet-induced obesity, hepatosteatosis and insulin resistance. Wild-type (WT) and pAdipor1 transgenic mice were fed ad libitum with a standard chow diet (Chow) or a high-fat/sucrose diet (HFSD) for 24 weeks, beginning at 6 to 7 weeks of age. There were 12 mice per genetic/diet/sex group. When challenged with HFSD to induce obesity, the pAdipor1 transgenic mice resisted development of weight gain, hepatosteatosis and insulin resistance. These mice had lowered plasma adiponectin, triglyceride and glycerol concentrations compared to WT mice. Moreover, we found that (indicated by mRNA levels) fatty acid oxidation was enhanced in skeletal muscle and adipose tissue, and liver lipogenesis was inhibited. The pAdipor1 transgene also restored HFSD-reduced phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose transporter 4 mRNA in the adipose tissues, implying that the increased Pck1 may promote glyceroneogenesis to reduce glucose intolerance and thus activate the flux of glyceride-glycerol to resist diet-induced weight gain in the adipose tissues. Taken together, we demonstrated that pAdipor1 can prevent diet-induced weight gain and insulin resistance. Our findings may provide potential therapeutic strategies for treating metabolic syndromes and obesity, such as treatment with an ADIPOR1 agonist or activation of Adipor1 downstream targets.  相似文献   

6.
To investigate the role of S100 calcium-binding protein A16 (S100A16) in hepatic lipid metabolism, S100a16 transgenic, S100a16 knockdown, and wildtype C57BL/6 mice were fed either a high-fat diet (HFD) or normal-fat diet (NFD) for 16 weeks. The results showed that for HFD-fed mice, S100a16 transgenic mice showed significantly more severe fatty liver than other HFD-fed mice, with a significant increase in serum triglyceride (TG) concentration, with more and larger lipid droplets in the liver, whereas S100a16 knockdown mice were completely opposite, with liver fat lesions and TG serological changes being the mildest; for NFD-fed mice, liver fat accumulation and serum TG concentrations were significantly lower than those fed HFD, and no significant lipid droplets were found in the liver. Further, we found that calmodulin (CaM) interacts with S100A16, a member of the AMP-activated protein kinase (AMPK) pathway. Our research found that S100A16 regulates the AMPK pathway-associated protein by interacting with CaM to regulate liver lipid synthesis. S100A16 regulates liver lipid metabolism through the CaM/CAMKK2/AMPK pathway. Overexpression of S100A16 promotes the deterioration of fatty liver induced by HFD, and low expression of S100A16 can attenuate fatty liver.  相似文献   

7.
We showed previously that UBXD8 plays a key role in proteasomal degradation of lipidated ApoB in hepatocarcinoma cell lines. In the present study, we aimed to investigate the functions of UBXD8 in liver in vivo. For this purpose, hepatocyte-specific UBXD8 knockout (UBXD8-LKO) mice were generated. They were fed with a normal or high-fat diet, and the phenotypes were compared with those of littermate control mice. Hepatocytes obtained from UBXD8-LKO and control mice were analyzed in culture. After 26 wk of a high-fat diet, UBXD8-LKO mice exhibited macrovesicular steatosis in the periportal area and microvesicular steatosis in the perivenular area, whereas control mice exhibited steatosis only in the perivenular area. Furthermore, UBXD8-LKO mice on a high-fat diet had significantly lower concentrations of serum triglyceride and VLDL than control mice. A Triton WR-1339 injection study revealed that VLDL secretion from hepatocytes was reduced in UBXD8-LKO mice. The decrease of ApoB secretion upon UBXD8 depletion was recapitulated in cultured primary hepatocytes. Accumulation of lipidated ApoB in lipid droplets was observed only in UBXD8-null hepatocytes. The results showed that depletion of UBXD8 in hepatocytes suppresses VLDL secretion, and could lead to periportal steatosis when mice are fed a high-fat diet. This is the first demonstration that an abnormality in the intracellular ApoB degradation mechanism can cause steatosis, and provides a useful model for periportal steatosis, which occurs in several human diseases.  相似文献   

8.
We have recently shown that the long-term ingestion of dietary diacylglycerol (DAG) mainly containing 1,3-isoform reduces body fat accumulation in humans as compared to triacylglycerol (TAG) with the same fatty acid composition. The fat reduction in this human experiment was most pronounced in visceral fat and hepatic fat. Recent animal studies have also indicated that dietary DAG induces alteration of lipid metabolism in the rat liver. In the present study, the dietary effects of DAG on high fat diet-induced hepatic fat accumulation and hepatic microsomal triglyceride transfer protein (MTP) activity were examined in comparison with those of TAG diet in rats. When the TAG oil content was increased from 10 to 30 g/100 g diet, hepatic TAG concentration, hepatic MTP activity and MTP large subunit mRNA levels were significantly increased after 21 days. However, when the dietary TAG oil (30 g/100 g diet) was replaced with the same concentration of DAG oil with the same fatty acid composition, the increase of the TAG concentration and the MTP activity in the liver were significantly less and the mRNA levels remained unchanged. The MTP activity levels correlated significantly with hepatic TAG concentration.These results showed that dietary DAG may suppress high fat diet-induced MTP activity in the liver, and indicated the possibility that hepatic TAG concentration may regulate hepatic MTP activity.  相似文献   

9.
Hepatic expression profiling has revealed miRNA changes in liver diseases, while hepatic miR-155 expression was increased in murine non-alcoholic fatty liver disease, suggesting that miR-155 might regulate the biological process of lipid metabolism. To illustrate the effects of miR-155 gain of function in transgenic mouse liver on lipid metabolism, transgenic mice (i.e., Rm155LG mice) for the conditional overexpression of mouse miR-155 transgene mediated by Cre/lox P system were firstly generated around the world in this study. Rm155LG mice were further crossed to Alb-Cre mice to realize the liver-specific overexpression of miR-155 transgene in Rm155LG/Alb-Cre double transgenic mice which showed the unaltered body weight, liver weight, epididymal fat pad weight and gross morphology and appearance of liver. Furthermore, liver-specific overexpression of miR-155 transgene resulted in significantly reduced levels of serum total cholesterol, triglycerides (TG) and high-density lipoprotein (HDL), as well as remarkably decreased contents of hepatic lipid, TG, HDL and free fatty acid in Rm155LG/Alb-Cre transgenic mice. More importantly, microarray data revealed a general downward trend in the expression profile of hepatic genes with functions typically associated with fatty acid, cholesterol and triglyceride metabolism, which is likely at least partially responsible for serum cholesterol and triglyceride lowering observed in Rm155LG/Alb-Cre mice. In this study, we demonstrated that hepatic overexpression of miR-155 alleviated nonalcoholic fatty liver induced by a high-fat diet. Additionally, carboxylesterase 3/triacylglycerol hydrolase (Ces3/TGH) was identified as a direct miR-155 target gene that is potentially responsible for the partial liver phenotypes observed in Rm155LG/Alb-Cre mice. Taken together, these data from miR-155 gain of function study suggest, for what we believe is the first time, the altered lipid metabolism and provide new insights into the metabolic state of the liver in Rm155LG/Alb-Cre mice.  相似文献   

10.
11.
Obesity is one of the most serious health problems in the world, increasing the risk of other chronic diseases. Alterations in fatty acid synthesis related genes are crucially involved in obesity progression. Diosgenin (DG) was one of the phytosterols compounds with vital activity against lipid disorders. Therefore, this study was intended to evaluate the protective effect of DG on lipogenesis in the high-fat diet (HFD)-induced obesity in mice, via investigating the expression of two of the fatty acid synthesis–involved genes; sterol regulatory element-binding protein (SREBP-1c) and fatty acid synthase (FASN) genes. Thirty adult male mice were divided into 3 groups. Control group, fed with normal diet; HFD group, mice fed with a high-fat diet and HFD + DG group, mice fed with a high-fat diet and supplemented in parallel with DG for 6 consecutive weeks. The effect of DG on Body weights, liver enzymes, lipid profile, were evaluated. Histopathological fatty changes as well as SREBP-1c and FASN gene expression were also investigated. DG significantly alleviated body weight gain, adjusted liver enzymes, and improved lipid profile. Additionally, DG ameliorated the histopathological changes by reducing the lipid vacuoles and hence the hepatosteatosis. Accordingly, DG significantly downregulated the two-fold increase in the SREBP-1c and FASN gene expression observed in the HFD group. In conclusion, DG possesses a beneficial impact against diet-induced obesity in mice, which makes it a good candidate for NAFLD and obesity prevention.  相似文献   

12.

Aims

The search for natural agents that minimize obesity-associated disorders is receiving special attention. In this regard, the present study aimed to evaluate the prophylactic effect of Chlorella vulgaris (CV) on body weight, lipid profile, blood glucose and insulin signaling in liver, skeletal muscle and adipose tissue of diet-induced obese mice.

Main methods

Balb/C mice were fed either with standard rodent chow diet or high-fat diet (HFD) and received concomitant treatment with CV for 12 consecutive weeks. Triglyceride, free fatty acid, total cholesterol and fractions of cholesterol were measured using commercial assay. Insulin and leptin levels were determined by enzyme-linked immunosorbent assay (ELISA). Insulin and glucose tolerance tests were performed. The expression and phosphorylation of IRβ, IRS-1 and Akt were determined by Western blot analyses.

Key findings

Herein we demonstrate for the first time in the literature that prevention by CV of high-fat diet-induced insulin resistance in obese mice, as shown by increased glucose and insulin tolerance, is in part due to the improvement in the insulin signaling pathway at its main target tissues, by increasing the phosphorylation levels of proteins such as IR, IRS-1 and Akt. In parallel, the lower phosphorylation levels of IRS-1ser307 were observed in obese mice. We also found that CV administration prevents high-fat diet-induced dyslipidemia by reducing triglyceride, cholesterol and free fatty acid levels.

Significance

We propose that the modulatory effect of CV treatment preventing the deleterious effects induced by high-fat diet is a good indicator for its use as a prophylactic–therapeutic agent against obesity-related complications.  相似文献   

13.
Epiberberine (EPI), extracted from Rhizome Coptidis, has been shown to attenuate hyperlipidemia in vivo. Herein we have studied the mechanism by which EPI is active against non-alcoholic steatohepatitis (NASH) using, mice fed on a methionine- and choline-deficient (MCD) diet and HepG2 cells exposed to free fatty acids (FFA). We show that small heterodimer partner (SHP) protein is key in the regulation of lipid synthesis. In HepG2 cells and in the livers of MCD-fed mice, EPI elevated SHP levels, and this was accompanied by a reduction in sterol regulatory element-binding protein-1c (SREBP-1c) and FASN. Therefore, EPI reduced triglyceride (TG) accumulation in steatotic hepatocytes, even in HepG2 cells treated with siRNA-SHP, and also improved microbiota. Thus, EPI suppresses hepatic TG synthesis and ameliorates liver steatosis by upregulating SHP and inhibiting the SREBP1/FASN pathway, and improves gut microbiome.  相似文献   

14.
Liver fatty acid (FA)-binding protein (L-Fabp), a cytoplasmic protein expressed in liver and small intestine, regulates FA trafficking in vitro and plays an important role in diet-induced obesity. We observed that L-Fabp(-/-) mice are protected against Western diet-induced obesity and hepatic steatosis. These findings are in conflict, however, with another report of exaggerated obesity and increased hepatic steatosis in female L-Fabp(-/-) mice fed a cholesterol-supplemented diet. To resolve this apparent paradox, we fed female L-Fabp(-/-) mice two different cholesterol-supplemented low-fat diets and discovered (on both diets) lower body weight in L-Fabp(-/-) mice than in congenic wild-type C57BL/6J controls and similar or reduced hepatic triglyceride content. We extended these comparisons to mice fed low-cholesterol, high-fat diets. Female L-Fabp(-/-) mice fed a high-saturated fat (SF) diet were dramatically protected against obesity and hepatic steatosis, whereas weight gain and hepatic lipid content were indistinguishable between mice fed a high-polyunsaturated FA (PUFA) diet and control mice. These findings demonstrate that L-Fabp functions as a metabolic sensor with a distinct hierarchy of FA sensitivity. We further conclude that cholesterol supplementation does not induce an obesity phenotype in L-Fabp(-/-) mice, nor does it play a significant role in the protection against Western diet-induced obesity in this background.  相似文献   

15.
The biochemical differences between simple steatosis, a benign liver disease, and non-alcoholic steatohepatitis, which leads to cirrhosis, are unclear. Fat aussie is an obese mouse strain with a truncating mutation (foz) in the Alms1 gene. Chow-fed female foz/foz mice develop obesity, diabetes, and simple steatosis. We fed foz/foz and wildtype mice a high-fat diet. Foz/foz mice developed serum ALT elevation and severe steatohepatitis with hepatocyte ballooning, inflammation, and fibrosis; wildtype mice showed simple steatosis. Biochemical pathways favoring hepatocellular lipid accumulation (fatty acid uptake; lipogenesis) and lipid disposal (fatty acid beta-oxidation; triglyceride egress) were both induced by high-fat feeding in wildtype but not foz/foz mice. The resulting extremely high hepatic triglyceride levels were associated with induction of mitochondrial uncoupling protein-2 and adipocyte-specific fatty acid binding protein-2, but not cytochrome P4502e1 or lipid peroxidation. In this model of metabolic syndrome, transition of steatosis to steatohepatitis was associated with hypoadiponectinemia, a mediator of hepatic fatty acid disposal pathways.  相似文献   

16.
Ectonucleotide pyrophosphate phosphodiesterase (ENPP1) has been shown to negatively modulate insulin receptor and to induce cellular insulin resistance when overexpressed in various cell types. Systemic insulin resistance has also been observed when ENPP1 is overexpressed in multiple tissues of transgenic models and attributed largely to tissue insulin resistance induced in skeletal muscle and liver. Another key tissue in regulating glucose and lipid metabolism is adipose tissue (AT). Interestingly, obese patients with insulin resistance have been reported to have increased AT ENPP1 expression. However, the specific effects of ENPP1 in AT have not been studied. To better understand the specific role of AT ENPP1 on systemic metabolism, we have created a transgenic mouse model (C57/Bl6 background) with targeted overexpression of human ENPP1 in adipocytes, using aP2 promoter in the transgene construct (AdiposeENPP1-TG). Using either regular chow or pair-feeding protocol with 60% fat diet, we compared body fat content and distribution and insulin signaling in adipose, muscle, and liver tissues of AdiposeENPP1-TG and wild-type (WT) siblings. We also compared response to intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT). Our results show no changes in Adipose ENPP1-TG mice fed a regular chow diet. After high-fat diet with pair-feeding protocol, AdiposeENPP1-TG and WT mice had similar weights. However, AdiposeENPP1-TG mice developed fatty liver in association with changes in AT characterized by smaller adipocyte size and decreased phosphorylation of insulin receptor Tyr(1361) and Akt Ser(473). These changes in AT function and fat distribution were associated with systemic abnormalities of lipid and glucose metabolism, including increased plasma concentrations of fatty acid, triglyceride, plasma glucose, and insulin during IPGTT and decreased glucose suppression during ITT. Thus, our results show that, in the presence of a high-fat diet, ENPP1 overexpression in adipocytes induces fatty liver, hyperlipidemia, and dysglycemia, thus recapitulating key manifestations of the metabolic syndrome.  相似文献   

17.
Liu Y  Dang H  Li D  Pang W  Hammock BD  Zhu Y 《PloS one》2012,7(6):e39165
Non-alcoholic fatty liver disease is associated with obesity and considered an inflammatory disease. Soluble epoxide hydrolase (sEH) is a major enzyme hydrolyzing epoxyeicosatrienoic acids and attenuates their cardiovascular protective and anti-inflammatory effects. We examined whether sEH inhibition can protect against high-fat (HF)-diet-induced fatty liver in mice and the underlying mechanism. Compared with wild-type littermates, sEH-null mice showed lower diet-induced lipid accumulation in liver, as seen by Oil-red O staining and triglycerides levels. We studied the effect of sEH inhibition on diet-induced fatty liver by feeding C57BL/6 mice an HF diet for 8 weeks (short-term) or 16 weeks (long-term) and administering t-AUCB, a selective sEH inhibitor. sEH inhibition had no effect on the HF-diet-increased body and adipose tissue weight or impaired glucose tolerance but alleviated the diet-induced hepatic steatosis. Adenovirus-mediated overexpression of sEH in liver increased the level of triglycerides in liver and the hepatic inflammatory response. Surprisingly, the induced expression of sEH in liver occurred only with the long-term but not short-term HF diet, which suggests a secondary effect of HF diet on regulating sEH expression. Furthermore, sEH inhibition attenuated the HF-diet-induced increase in plasma levels of proinflammatory cytokines and their mRNA upregulation in adipose tissue, which was accompanied by increased macrophage infiltration. Therefore, sEH inhibition could alleviate HF-diet-induced hepatic steatosis, which might involve its anti-inflammatory effect in adipose tissue and direct inhibition in liver. sEH may be a therapeutic target for HF-diet-induced hepatic steatosis in inhibiting systemic inflammation.  相似文献   

18.
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by metabolic disturbances in specific tissues. The present work aimed to analyze the effects of xanthohumol (XN) and 8-prenylnaringenin (8PN), two beer-derived polyphenols, in liver and skeletal muscle lipid and glycolytic metabolism in T2DM mice model. Thirty C57Bl/6 mice were randomly divided into five groups: standard diet (control), high-fat diet (DM), high-fat diet plus ethanol (DM-Ethanol), high-fat diet plus 10 mg/L XN (DM-XN) and high-fat diet plus 10 mg/L 8PN (DM-8PN) during 20 weeks. Fasting blood glucose and insulin tolerance tests were performed 1 week before sacrifice. At the end of the study, blood, liver and skeletal muscle were collected. Both XN and 8PN treatments prevented body weight gain; decreased glycemia, triglyceride, cholesterol and alkaline phosphatase levels; and improved insulin sensitivity. Polyphenols promoted hepatic and skeletal muscle AMP-activated protein kinase (AMPK) activation, diminishing the expression of target lipogenic enzymes (sterol regulatory element binding protein-1c and fatty acid synthase) and acetyl-CoA carboxylase activity. Moreover, both XN and 8PN treatments decreased VEGFR-1/VEGFB pathway, involved in fatty acid uptake, and increased AS160 expression, involved in GLUT4 membrane translocation. Presented data demonstrated that both XN and 8PN treatment resulted in AMPK signaling pathway activation, thus suppressing lipogenesis. Their consumption prevented body weight gain and improved plasma lipid profile, with significant improvement of insulin resistance and glucose tolerance. XN- or 8PN-enriched diet could ameliorate diabetic-associated metabolic disturbances by regulating glucose and lipid pathways.  相似文献   

19.
Wang YX  Lee CH  Tiep S  Yu RT  Ham J  Kang H  Evans RM 《Cell》2003,113(2):159-170
In contrast to the well-established roles of PPARgamma and PPARalpha in lipid metabolism, little is known for PPARdelta in this process. We show here that targeted activation of PPARdelta in adipose tissue specifically induces expression of genes required for fatty acid oxidation and energy dissipation, which in turn leads to improved lipid profiles and reduced adiposity. Importantly, these animals are completely resistant to both high-fat diet-induced and genetically predisposed (Lepr(db/db)) obesity. As predicted, acute treatment of Lepr(db/db) mice with a PPARdelta agonist depletes lipid accumulation. In parallel, PPARdelta-deficient mice challenged with high-fat diet show reduced energy uncoupling and are prone to obesity. In vitro, activation of PPARdelta in adipocytes and skeletal muscle cells promotes fatty acid oxidation and utilization. Our findings suggest that PPARdelta serves as a widespread regulator of fat burning and identify PPARdelta as a potential target in treatment of obesity and its associated disorders.  相似文献   

20.
Edible insects, Bombyx mori (silkworm; SW), which feed on mulberry leaves, have been consumed by humans for a long time as supplements or traditional medication. Non-alcoholic fatty liver disease (NAFLD) is a liver metabolic disorder that affects many people worldwide. We examined the hepatoprotective effects of SW using in vitro and high-fat and high-fructose (HFHF) diet-induced obese in vivo model mice by real-time PCR, immunoblot analysis, and fecal microbiota analysis. SW significantly reduced lipid accumulation and expression of the lipogenic genes in HepG2 cells and the livers of HFHF-induced mice. SW caused significant reductions in triglycerides, and total cholesterol in serum and upregulation of fatty acid oxidation markers compared to the HFHF group. Besides, SW significantly induced phosphorylation of AMPK and ACC in both models, suggesting roles in AMPK activation and the ACC signaling pathway. Furthermore, the gut microbiota analysis demonstrated that SW treatment reduced Firmicutes to Bacteroidetes ratios and the relative abundance of the Lachnospiraceae family compared to HFHF-induced obese mice. These results provide a novel therapeutic agent of hepatoprotective effects of SW for non-alcoholic hepatic steatosis that targets hepatic AMPK and ACC-mediated lipid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号