首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cerebral blood flow (CBF) is maintained constant despite changes in systemic blood pressure (BP) through multiple mechanisms of autoregulation such as vascular myogenic reactivity. Our aim was to determine myogenic characteristics of cannulated middle cerebral arteries (MCA) in male and female stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto rats (WKY) at 12 wk of age under pressurised no-flow conditions. MCA pressure-diameter relationships (20-200 mmHg) were constructed in active (with calcium) and passive (without calcium) conditions, and myogenic and mechanical properties were determined. Myogenic reactivity in WKY (P < 0.05) and SHRSP (P < 0.05) males was impaired compared with their female counterparts. Comparison of SHRSP with WKY in males revealed similar myogenic reactivity, but in females SHRSP exhibited augmented myogenic reactivity (P < 0.05). In both sexes, myogenic tone yielded at lower pressure in SHRSP compared with WKY vessels (120-140 vs. 140-180 mmHg). Stress-strain relationships and elastic moduli in WKY rats showed that vessels were stiffer in females than in males. Conversely, in SHRSP, male vessels were stiffer than female vessels. Comparison of strains in males indicated that stiffness was increased in SHRSP compared with WKY vessels, whereas the converse was observed in females. These findings demonstrate that MCA myogenic and distensibility characteristics exhibit significant sex- and strain-dependent differences. Inappropriate myogenic adaptation and augmented vascular stiffness, particularly in male SHRSP, are potential limiting factors in blood flow autoregulation and may increase the predisposition for stroke-related cerebrovascular events.  相似文献   

2.
Arterial smooth muscle constriction in response to pressure, i.e., myogenic tone, may involve calcium-dependent and calcium-sensitization mechanisms. Calcium sensitization in vascular smooth muscle is regulated by kinases such as PKC and Rho kinase, and activity of these kinases is known to be altered in cardiovascular disorders. In the present study, we evaluated the relative contribution of PKC and Rho kinase to myogenic tone in cerebral arteries in hypertension. Myogenic tone and arterial wall calcium in Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) were measured simultaneously, and the effect of PKC and Rho kinase inhibitors on myogenic tone was evaluated. SHR arteries showed significantly greater myogenic tone than WKY arteries. Pressure/wall tension-arterial wall calcium curves showed a hyperbolic relation in WKY rats, but the curves for SHR arteries were parabolic. Myogenic tone was decreased by the Rho kinase inhibitors Y-27632 and HA-1077, with a significantly greater effect in SHR than in WKY arteries. Reduction in myogenic tone produced by the PKC inhibitor bisindolylmaleimide I in WKY and SHR arteries was significantly less than that produced by Rho kinase inhibition. The pressure-dependent increase in myogenic tone was significantly decreased by Y-27632, and the decrease was markedly greater than that produced by bisindolylmaleimide I in SHR arteries. In WKY arteries, the pressure-dependent increase in myogenic tone was decreased to a similar extent by Y-27632 and bisindolylmaleimide I. These results suggest greater myogenic tone with increased calcium sensitization in SHR arteries, largely because of Rho kinase activation, with a minor contribution of PKC activation.  相似文献   

3.
The aims of the study were to compare the myogenic and structural properties of middle cerebral arteries (MCAs) from the stroke-prone spontaneously hypertensive rat (SHRSP) with MCAs from the spontaneously hypertensive rat (SHR) before stroke development in SHRSP. Rats were fed a "Japanese" diet (low-protein rat chow and 1% NaCl in drinking water) for 8 wk, and cerebral arteries were studied in vitro at 12 wk using a pressure arteriograph. Systolic pressure was significantly increased in SHRSP compared with SHR at 12 wk. Between 60 and 180 mmHg, MCAs from SHR maintained an essentially constant diameter, i.e., displayed a "myogenic range," whereas the diameter of MCAs from SHRSP progressively increased as a function of pressure. Passive lumen diameter of MCAs from SHRSP was reduced at high pressure, and wall thickness and wall/lumen were increased, compared with SHR. Wall cross-sectional area was also increased in MCAs from SHRSP compared with the SHR, indicating growth. The stress-strain relationship was shifted to the left in MCAs from SHRSP, indicating decreased MCA distensibility compared with SHR. However, collagen staining with picrosirius red revealed a redistribution of collagen to the outer half of the MCA wall in SHRSP compared with SHR. These data demonstrate impaired myogenic properties in prestroke SHRSP compared with SHR, which may explain stroke development. The structural differences in MCAs from SHRSP compared with SHR were a consequence of both growth and a reduced distensibility.  相似文献   

4.

Background and Purpose

Chronic hypertension decreases internal diameter of cerebral arteries and arterioles. We recently showed that short-term treatment with the angiotensin II receptor blocker telmisartan restored baseline internal diameter of small cerebral arterioles in spontaneously hypertensive rats (SHR), via reversal of structural remodeling and inhibition of the angiotensin II vasoconstrictor response. As larger arteries also participate in the regulation of cerebral circulation, we evaluated whether similar short-term treatment affects middle cerebral arteries of SHR.

Methods

Baseline internal diameters of pressurised middle cerebral arteries from SHR and their respective controls, Wistar Kyoto rats (WKY) and responses to angiotensin II were studied in a small vessel arteriograph. Pressure myogenic curves and passive internal diameters were measured following EDTA deactivation, and elastic modulus from stress-strain relationships.

Results

Active baseline internal diameter was 23% lower in SHR compared to WKY, passive internal diameter (EDTA) 28% lower and elastic modulus unchanged. Pressure myogenic curves were shifted to higher pressure values in SHR. Telmisartan lowered blood pressure but had no effect on baseline internal diameter nor on structural remodeling (passive internal diameter and elastic modulus remained unchanged compared to SHR). Telmisartan shifted the pressure myogenic curve to lower pressure values than SHR.

Conclusion

In the middle cerebral arteries of SHR, short-term treatment with telmisartan had no effect on structural remodeling and did not restore baseline internal diameter, but allowed myogenic tone to adapt towards lower pressure values.  相似文献   

5.
Lin LJ  Tang FK  Hua N  Lu H  Di CX  Tang XZ  Li Y 《生理学报》2012,64(1):62-68
To investigate the time-course changes of myogenic tone in mesenteric small artery (MSA) of spontaneously hypertensive rat (SHR), thirty-two 7-week aged SHR rats were randomly divided into four groups (8, 16, 24, 32 weeks of age), and 32 sex- and age-matched Wistar-Kyoto (WKY) rats were assigned to control groups (CON). On the day of the study, segments of MSA were isolated and then cannulated to the two pipettes. Vascular diameters in response to the increased intraluminal pressure (from 0 mmHg to 150 mmHg, by 25 mmHg steps) of isolated MSA under no-flow conditions were recorded by a Pressure Myograph System both in physiologic salt solution (PSS) (active diameter, Da) and calcium-free PSS (passive diameter, Dp). The myogenic tone was calculated by (Dp - Da)/Dp × 100%. The tail artery pressure and vascular myogenic tone in SHR rats were significantly higher than those of the CON rats. Before 24 weeks, the vascular myogenic tone of MSA in SHR group increased monotonically, but at the end of 32 weeks, the vascular myogenic tone decreased in comparison with that in 24-week group, but was significantly higher than that in CON group. The tail artery pressure in SHR group slowly increased monotonically with increasing weeks of age, and the tail arterial pressure in 32-week group remained significantly higher than that in 24-week group. Vascular myogenic tone may participate in the whole process of hypertension. Early in the development of hypertension, because of the compensatory role of vascular tone, the vascular function has been partially compensated, thus guaranteeing adequate blood supply to organs. Late in the development of hypertension, because of the decompensation of myogenic tone, the vascular function is damaged, leading to the occurrence of severe vascular disease.  相似文献   

6.
In hypertension arterial wall properties do not necessarily depend on increased blood pressure alone. The present study investigates the relationship between the development of hypertension and thoracic aortic wall properties in 1.5-, 3-, and 6-mo-old spontaneously hypertensive rats (SHR); Wistar-Kyoto rats (WKY) served as controls. During ketamine-xylazine anesthesia, compliance and distensibility were assessed by means of a noninvasive ultrasound technique combined with invasive blood pressure measurements. Morphometric measurements provided in vivo media cross-sectional area and thickness, allowing the calculation of the incremental elastic modulus. Extracellular matrix protein contents were determined as well. Blood pressure was not significantly different in 1.5-mo-old SHR and WKY, but compliance and distensibility were significantly lower in SHR. Incremental elastic modulus was not significantly different between SHR and WKY at this age. Media thickness and media cross-sectional area were significantly larger in SHR than in WKY, but there was no consistent difference in collagen density and content between the strains. Blood pressure was significantly higher in 3- and 6-mo-old SHR than in WKY, and compliance was significantly lower in SHR. The findings in this study show that in SHR, in which hypertension develops over weeks, alterations in functional aortic wall properties precede the development of hypertension. The decrease in compliance and distensibility at a young age most likely results from media hypertrophy rather than a change in intrinsic elastic properties.  相似文献   

7.
Resistance artery narrowing and stiffening are key elements in the pathogenesis of essential hypertension, but their origin is not completely understood. In mesenteric resistance arteries (MRA) from spontaneously hypertensive rats (SHR), we have shown that inward remodeling is associated with abnormal elastic fiber organization, leading to smaller fenestrae in the internal elastic lamina. Our current aim is to determine whether this alteration is an early event that precedes vessel narrowing, or if elastic fiber reorganization in SHR arteries occurs because of the remodeling process itself. Using MRA from 10-day-old, 30-day-old, and 6-mo-old SHR and normotensive Wistar Kyoto rats, we investigated the time course of the development of structural and mechanical alterations (pressure myography), elastic fiber organization (confocal microscopy), and amount of elastin (radioimmunoassay for desmosine) and collagen (picrosirius red). SHR MRA had an impairment of fenestrae enlargement during the first month of life. In 30-day-old SHR, smaller fenestrae and more packed elastic fibers in the internal elastic lamina were paralleled by increased wall stiffness. Collagen and elastin levels were unaltered at this age. MRA from 6-mo-old SHR also had smaller fenestrae and a denser network of adventitial elastic fibers, accompanied by increased collagen content and vessel narrowing. At this age, elastase digestion was less effective in SHR MRA, suggesting a lower susceptibility of elastic fibers to enzymatic degradation. These data suggest that abnormal elastic fiber deposition in SHR increases resistance artery stiffness at an early age, which might participate in vessel narrowing later in life.  相似文献   

8.
In our studies with spontaneously hypertensive (SHR), Wistar-Kyoto (WKY), and Wistar rats, we observed normotensive WKY rats with cardiac hypertrophy determined by a greater left ventricular (LV) mass (LVM)-to-body weight (BW) ratio (LVM/BW) than that of normotensive Wistar rats. Thus we compared the following parameters in SHR, WKY, and Wistar rats: LVM/BW, cell capacitance as index of total surface area of the myocytes, length, width, and cross-sectional area of cardiac myocytes, LV collagen volume fraction, and myocardial stiffness. The LVM/BW of WKY (2.41 +/- 0.03 mg/g, n = 41) was intermediate between SHR (2.82 +/- 0.04 mg/g, n = 47) and Wistar rats (1.98 +/- 0.04 mg/g, n = 28). A positive correlation between blood pressure and LVM was found in SHR, whereas no such relationship was observed in WKY or Wistar rats. Cell capacitance and cross-sectional area were not significantly different in SHR and WKY rats; these values were significantly higher than those of Wistar rats. The cell length was smaller but the width was similar in WKY compared with SHR. Papillary muscles isolated from the LV of WKY and SHR were stiffer than those from Wistar rats. Consistently, a greater level of myocardial fibrosis was detected in WKY and SHR compared with Wistar rats. These findings demonstrate blood pressure-independent cardiac hypertrophy in normotensive WKY rats.  相似文献   

9.
Although postnatal maturation potently modulates agonist-induced cerebrovascular contractility, its effects on the mechanisms mediating cerebrovascular myogenic tone remain poorly understood. Because the regulation of calcium influx and myofilament calcium sensitivity change markedly during early postnatal life, the present study tested the general hypothesis that early postnatal maturation increases the pressure sensitivity of cerebrovascular myogenic tone via age-dependent enhancement of pressure-induced calcium mobilization and myofilament calcium sensitivity. Pressure-induced myogenic tone and changes in artery wall intracellular calcium concentrations ([Ca(2+)](i)) were measured simultaneously in endothelium-denuded, fura-2-loaded middle cerebral arteries (MCA) from pup [postnatal day 14 (P14)] and adult (6-mo-old) Sprague-Dawley rats. Increases in pressure from 20 to 80 mmHg enhanced myogenic tone in MCA from both pups and adults although the normalized magnitudes of these increases were significantly greater in pup than adult MCA. At each pressure step, vascular wall [Ca(2+)](i) was also significantly greater in pup than in adult MCA. Nifedipine significantly attenuated pressure-evoked constrictions in pup MCA and essentially eliminated all responses to pressure in the adult MCA. Both pup and adult MCA exhibited pressure-dependent increases in calcium sensitivity, as estimated by changes in the ratio of pressure-induced myogenic tone to wall [Ca(2+)](i). However, there were no differences in the magnitudes of these increases between pup and adult MCA. The results support the view that regardless of postnatal age, changes in both calcium influx and myofilament calcium sensitivity contribute to the regulation of cerebral artery myogenic tone. The greater cerebral myogenic response in P14 compared with adult MCA appears to be due to greater pressure-induced increases in [Ca(2+)](i), rather than enhanced augmentation of myofilament calcium sensitivity.  相似文献   

10.
Elastin is a major component of conduit arteries and a key determinant of vascular viscoelastic properties. Aberrant organization of elastic lamellae has been reported in resistance vessels from spontaneously hypertensive rats (SHR) before the development of hypertension. Hence, we have characterized the content and organization of elastic lamellae in conduit vessels of neonatal SHR in detail, comparing the carotid arteries from 1-wk-old SHR with those from Wistar-Kyoto (WKY) and Sprague Dawley (SD) rats. The general structure and mechanics were studied by pressure myography, and the internal elastic lamina organization was determined by confocal microscopy. Cyanide bromide-insoluble elastin scaffolds were also prepared from 1-mo-old SHR and WKY aortas to assess their weight, amino acid composition, three-dimensional lamellar organization, and mechanical characteristics. Carotid arteries from 1-wk-old SHR exhibited narrower lumen and greater intrinsic stiffness than those from their WKY and SD counterparts. These aberrations were associated with heightened elastin content and with a striking reduction in the size of the fenestrae present in the elastic lamellae. The elastin scaffolds isolated from SHR aortas also exhibited increased relative weight and stiffness, as well as the presence of peculiar trabeculae inside the fenestra that reduced their size. We suggest that the excessive and aberrant elastin deposited in SHR vessels during perinatal development alters their mechanical properties. Such abnormalities are likely to compromise vessel expansion during a critical period of growth and, at later stages, they could compromise hemodynamic function and participate in the development of systemic hypertension.  相似文献   

11.
The density of catecholamine-containing nerve fibers was studied in the cerebral and mesenteric arteries from normotensive Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR), and stroke-prone SHR (SHRSP) in the growing (SHR, WKY) and adult (SHR, SHRSP, WKY) animals. Cerebral arteries from SHR showed an increased adrenergic innervation from day 1. The nerve plexuses reached an adult pattern earlier in SHR than in WKY. The arteries from adult SHR and SHRSP (22 weeks old) showed a markedly higher nerve density than WKY. There was a positive linear correlation between blood pressure and nerve density for four cerebral arteries. The mesenteric arteries were not innervated at birth. However, hyperinnervation of these arteries in the SHR was already present at 10 days of age as compared with WKY. Sympathectomy with anti-nerve growth factor and guanethidine caused a complete disappearance of fluorescent fibers in the mesenteric arteries from SHR and WKY, and in the cerebral arteries of WKY. The same procedure caused only partial denervation of the cerebral arteries from hypertensive animals. We postulate that the increase in nerve density in the cerebral arteries from the hypertensive rats may contribute to the development of arterial hypertrophy in chronic hypertension through the trophic effect of the sympathetic innervation on vascular structure.  相似文献   

12.
The general purpose of this study was to test the effect of exercise training on the left ventricular (LV) pressure-volume relationship (LV/PV) and apoptotic signaling markers in normotensive and hypertensive hearts. Four-month-old female normotensive Wistar-Kyoto rats (WKY; n = 37) and spontaneously hypertensive rats (SHR; n = 38) were assigned to a sedentary (WKY-SED, n = 21; SHR-SED, n = 19) or treadmill-trained (WKY-TRD, n = 16; SHR-TRD, n = 19) group (~60% Vo(2 peak), 60 min/day, 5 days/wk, 12 wk). Ex vivo LV/PV were established in isovolumic Langendorff-perfused hearts, and LV levels of Akt, phosphorylated Akt (Akt(Pi)), Bad, phosphorylated Bad (Bad(Pi)) c-IAP, x-IAP, calcineurin, and caspases 3, 8, and 9 were measured. Heart-to-body weight ratio was increased in SHR vs. WKY (P < 0.05), concomitant with increased calcineurin mRNA (P < 0.05). There was a rightward shift in the LV/PV (P < 0.05) and a reduction in systolic elastance (E(s)) in SHR vs. WKY. Exercise training corrected E(s) in SHR (P < 0.05) but had no effect on the LV/PV in WKY. Caspase 3 was increased in SHR-SED relative to WKY-SED, while Bad(Pi,) c-IAP, and x-IAP were significantly lower in SHR relative to WKY (P < 0.05). Exercise training increased Bad(Pi) in both WKY and SHR but did not alter caspase 9 activity in either group. While caspase 3 activity was increased with training in WKY (P < 0.05), it was unchanged with training in SHR. We conclude that moderate levels of regular aerobic exercise attenuate systolic dysfunction early in the compensatory phase of hypertrophy, and that a differential phenotypical response to moderate-intensity exercise exists between WKY and SHR.  相似文献   

13.
Chronic cerebral hypoperfusion (CHP) induces microvascular changes that could contribute to the progression of vascular cognitive impairment and dementia in the aging brain. This study aimed to analyze the effects of CHP on structural, mechanical, and myogenic properties of the middle cerebral artery (MCA) after bilateral common carotid artery occlusion (BCCAO) in adult male Wistar rats. Sham animals underwent a similar surgical procedure without carotid artery (CA) ligation. After 15 days of occlusion, MCA and CA were dissected and MCA structural, mechanical, and myogenic properties were assessed by pressure myography. Collagen I/III expression was determined by immunofluorescence in MCA and CA and by Western blot in CA. mRNA levels for 1A1, 1A2, and 3A1 collagen subunits were quantified by quantitative real-time PCR in CA. Matrix metalloproteinase (MMP-1, MMP-2, MMP-9, and MMP-13) and hypoxia-inducible factor-1α (HIF-1α) protein expression were determined in CA by Western blot. BCCAO diminished cross-sectional area, wall thickness, and wall-to-lumen ratio. Nevertheless, whereas wall stress was increased, stiffness was not modified and myogenic response was diminished. Hypoperfusion triggered HIF-1α expression. Collagen I/III protein expression diminished in MCA and CA after BCCAO, despite increased mRNA levels for 1A1 and 3A1 collagen subunits. Therefore, the reduced collagen expression might be due to proteolytic degradation, since the expression of MMP-1 and MMP-9 increased in the CA. These data suggest that BCCAO induces hypotrophic remodeling by a mechanism that involves a reduction of collagen I/III in association with increased MMP-1 and MMP-9 and that decreases myogenic tone in major arteries supplying the brain.  相似文献   

14.
Kidneys form dopamine (DA) from L-dopa and serotonin from L-5-hydroxytryptophan (L-5-HTP) via aromatic L-amino acid decarboxylase. We compared the ability of isolated perfused kidneys from adult (20-week-old) spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) to form these biogenic amines. Renal vascular resistance (RVR) was greater in perfused kidneys from SHR (n = 10) than WKY (n = 8) (p less than 0.01). Slight decreases in RVR were observed during L-dopa infusion but these were unrelated to DA formation. L-Dopa infusion was associated with greater DA output in SHR than WKY in both the renal venous and urinary effluents although the latter did not achieve statistical significance. L-5-HTP increased RVR to a greater degree in SHR than WKY kidneys. This was associated with larger quantities of serotonin in the urinary and venous effluents and greater pressor responses to exogenous serotonin in SHR than WKY kidneys; however, either parameter alone was not significantly increased. Our findings do not support a deficiency of intrarenal DA formation as a pathogenic factor for hypertension in SHR. Biogenic amine formation is as great if not greater in SHR than WKY kidneys and appears to contribute largely to the greater increases in renal resistance seen in SHR kidneys on infusion of L-5-HTP. Enhanced renal serotonin formation may elevate blood pressure, whereas enhanced renal DA formation would favor blood pressure lowering, perhaps as a compensatory mechanism.  相似文献   

15.
Recipients of a kidney from spontaneously hypertensive rats (SHR) but not from normotensive Wistar-Kyoto rats (WKY) develop posttransplantation hypertension. To investigate whether renal sodium retention precedes the development of posttransplantation hypertension in recipients of an SHR kidney on a standard sodium diet (0.6% NaCl), we transplanted SHR and WKY kidneys to SHR x WKY F1 hybrids, measured daily sodium balances during the first 12 days after removal of both native kidneys, and recorded mean arterial pressure (MAP) after 8 wk. Recipients of an SHR kidney (n = 12) retained more sodium than recipients of a WKY kidney (n = 12) (7.3 +/- 10 vs. 4.0 +/- 0.7 mmol, P < 0.05). MAP was 144 +/- 6 mmHg in recipients of an SHR kidney and 106 +/- 5 mmHg in recipients of a WKY kidney (P < 0.01). Modest sodium restriction (0.2% NaCl) in a further group of recipients of an SHR kidney (n = 10) did not prevent posttransplantation hypertension (MAP, 142 +/- 4 mmHg). Urinary endothelin and urodilatin excretion rates were similar in recipients of an SHR and a WKY kidney. Transient excess sodium retention after renal transplantation may contribute to posttransplantation hypertension in recipients of an SHR kidney.  相似文献   

16.
OBJECTIVE: To compare the cardiorespiratory responses underlying the beneficial effects of hyperoxia during blood loss between normotensive (WKY) and hypertensive (SHR) rats. METHODS: Experiments were carried out in anesthetized animals with both carotid bifurcations either innervated or denervated. The effects of breathing 60% O2 in N2 were studied either in combination with non-hypotensive hemorrhage or during hemorrhagic hypotension. RESULTS: In normoxia arterial pressure fell more in SHR than in WKY for a given blood loss. During hyperoxia, nerve-intact rats showed initial suppression of ventilation, but bifurcation-denervated rats a powerful enhancement. In all groups, hyperoxia increased the overall tone of venous capacitance vessels. CONCLUSIONS: The greater blood loss in SHR than in WKY when bleeding down to a given arterial pressure results from a stronger constriction of venous capacitance vessels. Hyperoxia improves the ability of the cardiorespiratory system to resist the effects of hemorrhage by increasing the overall venous tone, thus supporting cardiac filling, and in some cases also by increasing alveolar ventilation, probably secondary to improved cerebral oxygenation. The beneficial effects of hyperoxia were: (i) not prevented by carotid denervation, and thus were presumably direct tissue effects of oxygen, (ii) strikingly weaker in SHR than in normotensive (WKY) rats.  相似文献   

17.
Large-artery stiffening is a major risk factor in aging and hypertension. Elevated blood pressure (BP) and vascular wall properties participate in arterial stiffening; we aimed to evaluate their respective role by combining echo-tracking and the spontaneously hypertensive rats (SHR) treated with low doses of a nitric oxide synthase inhibitor, shown to have arterial stiffening. Normotensive [Wistar-Kyoto (WKY)], SHR, and SHR treated for 2 wk with N(G)-nitro-L-arginine methyl ester (SHRLN) were anesthetized; BP and distension (pulsatile displacement) of the aortic walls with the ArtLab echo-tracking device were measured. Stiffness index increased in SHRLN vs. SHR; compliance, distensibility, and the slopes and area of the distension-pressure loop curve decreased. The pulsatile distension and pressure waveforms were strongly altered in SHRLN. Maximal values were decreased and increased, respectively, and the waveform kinetics also differed. Thus the area under the curve adjusted to heart rate (AUC/ms) was calculated. Acute BP reductions were induced by diltiazem in SHR and SHRLN, to levels similar to those of WKY. In SHR, compliance, distensibility, stiffness index, and the ascending slope of the distension-pressure loop reached the values of WKY, whereas they were only partially improved in SHRLN. Aortic distension (maximal value and AUC/ms) and the area of the distension-pressure loop were improved in SHR, but not in SHRLN. These data confirm the aortic stiffening induced by nitric oxide reduction in SHR. They show that the ArtLab system analyzes aortic stiffness in rats, and that the aortic pulsatile distension waveform is a parameter strongly dependent on the vascular wall properties.  相似文献   

18.
In acute experiments on SHR and WKY rats, the pial arterioles' myogenic responses to a drop in systemic blood pressure (SBP) were studied. The SHR seem to be more capable of keeping the myogenic activity in low SBP. It might depend on structural changes in the vascular wall under these conditions wall in the SHR.  相似文献   

19.
Impaired cerebral blood flow autoregulation is seen in uremic hypertension, whereas in nonuremic hypertension autoregulation is shifted toward higher perfusion pressure. The cerebral artery constricts in response to a rise in either lumen pressure or flow; we examined these responses in isolated middle cerebral artery segments from uremic Wistar-Kyoto rats (WKYU), normotensive control rats (WKYC), and spontaneously hypertensive rats (SHR). Pressure-induced (myogenic) constriction developed at 100 mmHg; lumen flow was then increased in steps from 0 to 98 microl/min. Some vessels were studied after endothelium ablation. Myogenic constriction was significantly lower in WKYU (28 +/- 2.9%) compared with both WKYC (39 +/- 2.5%, P = 0.035) and SHR (40 +/- 3.1%, P = 0.018). Flow caused constriction of arteries from all groups in an endothelium-independent manner. The response to flow was similar in WKYU and WKYC, whereas SHR displayed increased constriction compared with WKYU (P < 0.001) and WKYC (P < 0.001). We conclude that cerebral myogenic constriction is decreased in WKYU, whereas flow-induced constriction is enhanced in SHR.  相似文献   

20.
The role of endothelin (ET-1) in mediating the development of blood pressure was investigated in the spontaneously hypertensive (SHR) rat using the Wistar-Kyoto (WKY) rat as the normotensive control. The following were characterized in both rat strains: age-dependent changes in mean arterial blood pressure (MAP), tissue (blood, lung, heart, and kidney) levels of immunoreactive ET-1 like related peptides (ET-1RP), aortic ring responses to ET-1, and specific high-affinity tissue (lung, atrium, ventricle, aorta, and kidney) binding sites for 125I-labelled ET-1. Commencing at age 10 weeks through to 12 weeks, SHR rats but not WKY rats developed a significant increase in MAP (from 152 +/- 7 to 189 +/- 3 mmHg) (1 mmHg = 133.32 Pa). However, in both WKY and SHR rats immunoreactive levels of ET-1RP increased (100 and 80%, respectively) throughout the same measurement period. The potency of ET-1 to contract aortic rings from SHR rats was slightly but not significantly greater than that for aortic rings from WKY rats, although aortic rings from SHR rats contracted in the presence of 0.5 nM ET-1, while those from WKY rats did not. The levels of immunoreactive ET-1RP were significantly reduced (32%) in the kidney and unchanged in the heart and lung of SHR rats compared with WKY rats. Specific 125I-labelled ET-1 binding sites displayed an increase and a significant decrease (24%) of density in the atrium and ventricle, respectively, a significant increase (31%) of affinity in the lung, and were unchanged in the kidney and aorta of SHR rats compared with WKY rats following the development of hypertension. The lack of a correlation between circulating levels of immunoreactive ET-1RP and the development of hypertension coupled with a lack of significant differences in vascular reactivity suggest that ET-1 is not the sole mediator of hypertension in this animal model. However, the tissue-specific changes in immunoreactive ET-1RP and 125I-labelled ET-1 binding sites suggest that ET-1 may be a partial mediator of hypertension and is subject to compensatory changes in response to the increased total peripheral resistance in SHR rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号