首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of an initiative to develop Brachypodium distachyon as a genomic "bridge" species between rice and the temperate cereals and grasses, a BAC library has been constructed for the two diploid (2n = 2x = 10) genotypes, ABR1 and ABR5. The library consists of 9100 clones, with an approximate average insert size of 88 kb, representing 2.22 genome equivalents. To validate the usefulness of this species for comparative genomics and gene discovery in its larger genome relatives, the library was screened by PCR using primers designed on previously mapped rice and Poaceae sequences. Screening indicated a degree of synteny between these species and B. distachyon, which was confirmed by fluorescent in situ hybridization of the marker-selected BACs (BAC landing) to the 10 chromosome arms of the karyotype, with most of the BACs hybridizing as single loci on known chromosomes. Contiguous BACs colocalized on individual chromosomes, thereby confirming the conservation of genome synteny and proving that B. distachyon has utility as a temperate grass model species alternative to rice.  相似文献   

2.
Reliable and easy to use techniques for chromosome identification are critical for many aspects of cytogenetic research. Unfortunately, such techniques are not available in many plant species, especially those with a large number of small chromosomes. Here we demonstrate that fluorescence in situ hybridization (FISH) signals derived from bacterial artificial chromosomes (BACs) can be used as chromosome-specific cytogenetic DNA markers for chromosome identification in potato. We screened a potato BAC library using genetically mapped restriction fragment length polymorphism markers as probes. The identified BAC clones were then labeled as probes for FISH analysis. A set of 12 chromosome-specific BAC clones were isolated and the FISH signals derived from these BAC clones serve as convenient and reliable cytological markers for potato chromosome identification. We mapped the 5S rRNA genes, the 45S rRNA genes, and a potato late blight resistance gene to three specific potato chromosomes using the chromosome-specific BAC clones. Received: 19 January 2000 / Accepted: 27 March 2000  相似文献   

3.
Zhang P  Li W  Fellers J  Friebe B  Gill BS 《Chromosoma》2004,112(6):288-299
Fluorescence in situ hybridization (FISH) has been widely used in the physical mapping of genes and chromosome landmarks in plants and animals. Bacterial artificial chromosomes (BACs) contain large inserts making them amenable for FISH mapping. We used BAC-FISH to study genome organization and evolution in hexaploid wheat and its relatives. We selected 56 restriction fragment length polymorphism (RFLP) locus-specific BAC clones from libraries of Aegilops tauschii (the D-genome donor of hexaploid wheat) and A-genome diploid Triticum monococcum. Different types of repetitive sequences were identified using BAC-FISH. Two BAC clones gave FISH patterns similar to the repetitive DNA family pSc119; one BAC clone gave a FISH pattern similar to the repetitive DNA family pAs1. In addition, we identified several novel classes of repetitive sequences: one BAC clone hybridized to the centromeric regions of wheat and other cereal species, except rice; one BAC clone hybridized to all subtelomeric chromosome regions in wheat, rye, barley and oat; one BAC clone contained a localized tandem repeat and hybridized to five D-genome chromosome pairs in wheat; and four BAC clones hybridized only to a proximal region in the long arm of chromosome 4A of hexaploid wheat. These repeats are valuable markers for defined chromosome regions and can also be used for chromosome identification. Sequencing results revealed that all these repeats are transposable elements (TEs), indicating the important role of TEs, especially retrotransposons, in genome evolution of wheat.Communicated by P.B. Moens  相似文献   

4.
Fluorescence in situ hybridization (FISH) is commonly used to identify chromosomal aberrations such as translocations, deletions, duplications, gene fusions, and aneuploidies. It relies on the hybridization of fluorescently labeled DNA probes onto denatured metaphase chromosomes or interphase nuclei. These probes are often generated from DNA sequences cloned within bacterial artificial chromosomes (BACs). Growing these BACs in adequate amounts for FISH can be demanding. We describe FISH performed with bacteriophage Phi29 DNA polymerase amplified BAC DNA. Generating this material required significantly smaller cultures and less time than standard methods. The FISH results obtained were comparable with those obtained from standard BAC DNA. We believe this method of BAC DNA generation is useful for the entire FISH community as it improves considerably on prior methods.  相似文献   

5.
Efficient amplification and labelling of probes are crucial for successful sequence detection by fluorescent in situ hybridization (FISH). In particular, chromosome painting to visualize chromosome segments or entire chromosomes by FISH requires large amounts of probes derived from extended templates. There are a number of techniques for probe labelling. The most widespread is nick translation, based on the replicational incorporation of modified nucleotides. Here we demonstrate successful rolling-circle amplification (RCA) of very low amounts of long circular template sequences (single bacterial artificial chromosomes (BACs) or pools of BACs). The amplicons were suitable for labelling by nick translation and subsequent FISH. A novel achievement is the use of RCA for simultaneous amplification and labelling of single BACs or BAC pools in a labour- and cost-effective manner.  相似文献   

6.
FISH physical mapping with barley BAC clones   总被引:7,自引:0,他引:7  
Fluorescence in situ hybridization (FISH) is a useful technique for physical mapping of genes, markers, and other single- or low-copy sequences. Since clones containing less than 10 kb of single-copy DNA do not reliably produce detectable signals with current FISH techniques in plants, a bacterial artificial chromosome (BAC) partial library of barley was constructed and a FISH protocol for detecting unique sequences in barley BAC clones was developed. The library has a 95 kb average barley insert, representing about 20% of a barley genome. Two BAC clones containing hordein gene sequences were identified and partially characterized. FISH using these two BAC clones as probes showed specific hybridization signals near the end of the short arm of one pair of chromosomes. Restriction digests of these two BAC clones were compared with restriction patterns of genomic DNA; all fragments contained in the BAC clones corresponded to bands present in the genomic DNA, and the two BAC clones were not identical. The barley inserts contained in these two BAC clones were faithful copies of the genomic DNA. FISH with four BAC clones with inserts varying from 20 to 150 kb, showed distinct signals on paired chromatids. Physical mapping of single- or low-copy sequences in BAC clones by FISH will help to correlate the genetic and physical maps. FISH with BAC clones also provide an additional approach for saturating regions of interest with markers and for constructing contigs spanning those regions.  相似文献   

7.
A bovine bacterial artificial chromosome (BAC) library was screened for the presence of eight type I anchor loci previously used within hybrid somatic cells and an interspecies hybrid backcross to construct a genome map of bovine chromosome 19 (BTA19). Six out of eight loci were identified in the BAC library ( NF1, CRYB1, CHRNB1, TP53, GH1 and P4HB ). The BACs were then used in single-colour fluorescence in situ hybridization (FISH) to assign these genes to BTA19 band locations. Gene order was determined by single-colour FISH, and was confirmed by dual-colour FISH to mitotic and meiotic chromosomes. The order, centromere- NF1-CRYB1-CHRNB1-TP53-GH1-P4HB , was in agreement with the order determined by linkage analyses. In addition, the order of CHRNB1 and TP53 , previously unresolved by linkage analyses, was established. These data provide high-resolution cytogenetic anchorage of the BTA19 genome map from chromosome bands 14–22.  相似文献   

8.
Selection of chromosomal sublibraries from total human genomic libraries is critical for chromosome-based physical mapping approaches. We have previously reported a method of screening total human genomic library using flow sorted chromosomal DNA as a hybridization probe and selection of a human chromosome 22-enriched sublibrary from a total human bacterial artificial chromosome (BAC) library (Nucleic Acids Res 1995; 23: 1838–1839). We describe here further details of the method of construction as well as characterization of the chromosome 22-enriched sublibrary thus constructed. Nearly 40% of the BAC clones that have been mapped by fluorescence in situ hybridization (FISH) analysis were localized to chromosome 22. By screening the sublibrary using chromosome 22-specific hybridization probes, we estimated that the sublibrary represents at least 2.5 × coverage of chromosome 22. This is in good agreement with the results from FISH mapping experiments. FISH map data also indicate that chromosome 22-specific BACs in the sublibrary represent all the subregions of chromosome 22.  相似文献   

9.
We have integrated data from linkage mapping, physical mapping and karyotyping to gain a better understanding of the sex-determining locus, SEX, in Atlantic salmon (Salmo salar). SEX has been mapped to Atlantic salmon linkage group 1 (ASL1) and is associated with several microsatellite markers. We have used probes designed from the flanking regions of these sex-linked microsatellite markers to screen a bacterial artificial chromosome (BAC) library, representing an 11.7x coverage of the Atlantic salmon genome, which has been HindIII fingerprinted and assembled into contigs. BACs containing sex-linked microsatellites and their related contigs have been identified and representative BACs have been placed on the Atlantic salmon chromosomes by fluorescent in situ hybridization (FISH). This identified chromosome 2, a large metacentric, as the sex chromosome. By positioning several BACs on this chromosome by FISH, it was possible to orient ASL1 with respect to chromosome 2. The region containing SEX appears to lie on the long arm between marker Ssa202DU and a region of heterochromatin identified by DAPI staining. BAC end-sequencing of clones within sex-linked contigs revealed five hitherto unmapped genes along the sex chromosome. We are using an in silico approach coupled with physical probing of the BAC library to extend the BAC contigs to provide a physical map of ASL1, with a view to sequencing chromosome 2 and, in the process, identifying the sex-determining gene.  相似文献   

10.
Cheng Z  Presting GG  Buell CR  Wing RA  Jiang J 《Genetics》2001,157(4):1749-1757
Large-scale physical mapping has been a major challenge for plant geneticists due to the lack of techniques that are widely affordable and can be applied to different species. Here we present a physical map of rice chromosome 10 developed by fluorescence in situ hybridization (FISH) mapping of bacterial artificial chromosome (BAC) clones on meiotic pachytene chromosomes. This physical map is fully integrated with a genetic linkage map of rice chromosome 10 because each BAC clone is anchored by a genetically mapped restriction fragment length polymorphism marker. The pachytene chromosome-based FISH mapping shows a superior resolving power compared to the somatic metaphase chromosome-based methods. The telomere-centromere orientation of DNA clones separated by 40 kb can be resolved on early pachytene chromosomes. Genetic recombination is generally evenly distributed along rice chromosome 10. However, the highly heterochromatic short arm shows a lower recombination frequency than the largely euchromatic long arm. Suppression of recombination was found in the centromeric region, but the affected region is far smaller than those reported in wheat and barley. Our FISH mapping effort also revealed the precise genetic position of the centromere on chromosome 10.  相似文献   

11.
Chromosome painting, that is visualisation of chromosome segments or whole chromosomes based on fluorescence in situ hybridization (FISH) with chromosome-specific DNA probes is widely used for chromosome studies in mammals, birds, reptiles and insects. Attempts to establish chromosome painting in euploid plants have failed so far. Here, we report on chromosome painting in Arabidopsis thaliana (n = 5, 125 Mb C(-1)). Pools of contiguous 113-139 BAC clones spanning 2.6 and 13.3 Mb of the short and the long arm of chromosome 4 (17.5 Mb) were used to paint this entire chromosome during mitotic and meiotic divisions as well as in interphase nuclei. The possibility of identifying any particular chromosome region on pachytene chromosomes and within interphase nuclei using selected BACs is demonstrated by differential labelling. This approach allows us, for the first time, to paint an entire autosome of an euploid plant to study chromosome rearrangements, homologue association, interphase chromosome territories, as well as to identify homeologous chromosomes of related species.  相似文献   

12.
F Dong  J M McGrath  J P Helgeson  J Jiang 《Génome》2001,44(4):729-734
Genomic in situ hybridization (GISH) is one of the most popular and effective techniques for detecting alien chromatin introgressed into breeding lines; however, GISH analysis alone does not reveal the genetic identity of the alien chromosomes. We previously isolated a set of bacterial artificial chromosomes (BACs) specific to each of the 12 potato chromosomes. These BAC clones can be used as chromosome-specific cytogenetic DNA markers (CSCDMs) for potato chromosome identification. Here we demonstrate that GISH and fluorescence in situ hybridization (FISH), using CSCDMs, can be performed sequentially on the same chromosome preparations. Somatic metaphase chromosomes prepared using an enzymatic digestion and "flame-drying" procedure allows repeated probing up to five times without significant damage to chromosome morphology. The sequential GISH and FISH analyses reveal the genomic origin and genetic identity of the alien chromosomes in a single experiment and also determine whether an alien chromosome has been added to the genetic background of potato or is substituting for a homoeologous potato chromosome. The sequential GISH and FISH procedures should be widely applicable for germplasm characterization, especially in plant species with small-sized chromosomes.  相似文献   

13.
Integrated karyotyping of sorghum by in situ hybridization of landed BACs.   总被引:7,自引:0,他引:7  
The reliability of genome analysis and proficiency of genetic manipulation are increased by assignment of linkage groups to specific chromosomes, placement of centromeres, and orientation with respect to telomeres. We have endeavored to establish means to enable these steps in sorghum (Sorghum bicolor (L.) Moench), the genome of which contains ca. 780 Mbp spread across n = 10 chromosomes. Our approach relies on fluorescence in situ hybridization (FISH) and integrated structural genomic resources, including large-insert genomic clones in bacterial artificial chromosome (BAC) libraries. To develop robust FISH probes, we selected sorghum BACs by association with molecular markers that map near the ends of linkage groups, in regions inferred to be high in recombination. Overall, we selected 22 BACs that encompass the 10 linkage groups. As a prelude to development of a multiprobe FISH cocktail, we evaluated BAC-derived probes individually and in small groups. Biotin- and digoxygenin-labeled probes were made directly from the BAC clones and hybridized in situ to chromosomes without using suppressive unlabelled C0t-1 DNA. Based on FISH-signal strength and the relative degree of background signal, we judged 19 BAC-derived probes to be satisfactory. Based on their relative position, and collective association with all 10 linkage groups, we chose 17 of the 19 BACs to develop a 17-locus probe cocktail for dual-color detection. FISH of the cocktail allowed simultaneous identification of all 10 chromosomes. The results indicate that linkage and physical maps of sorghum allow facile selection of BAC clones according to position and FISH-signal quality. This capability will enable development of a high-quality molecular cytogenetic map and an integrated genomics system for sorghum, without need of chromosome flow sorting or microdissection. Moreover, transgeneric FISH experiments suggest that the sorghum system might be applicable to other Gramineae.  相似文献   

14.
It is well known that chromosome in situ hybridization allows the unequivocal identification of targeted human somatic chromosomes. Different fluorescent in situ hybridization (FISH) techniques have been developed throughout the years and, following the mitotic studies, meiotic analyses have been performed using these different techniques. The introduction of M-FISH techniques to the analysis of meiotic cells has allowed the study of meiotic processes for every individual human chromosome. In this paper, we review the different FISH and M-FISH techniques that have been used on human meiotic cells in both men and women.  相似文献   

15.
The Bombyx mori karyotype and the assignment of linkage groups   总被引:3,自引:0,他引:3       下载免费PDF全文
Yoshido A  Bando H  Yasukochi Y  Sahara K 《Genetics》2005,170(2):675-685
Lepidopteran species have a relatively high number of small holocentric chromosomes (Bombyx mori, 2n = 56). Chromosome identification has long been hampered in this group by the high number and by the absence of suitable markers like centromere position and chromosome bands. In this study, we carried out fluorescence in situ hybridization (FISH) on meiotic chromosome complements using genetically mapped B. mori bacterial artificial chromosomes (BACs) as probes. The combination of two to four either green or red fluorescence-labeled probes per chromosome allowed us to recognize unequivocally each of the 28 bivalents of the B. mori karyotype by its labeling pattern. Each chromosome was assigned one of the already established genetic linkage groups and the correct orientation in the chromosome was defined. This facilitates physical mapping of any other sequence and bears relevance for the ongoing B. mori genome projects. Two-color BAC-FISH karyotyping overcomes the problem of chromosome recognition in organisms where conventional banding techniques are not available.  相似文献   

16.
J Song  F Dong  J Jiang 《Génome》2000,43(1):199-204
Lack of reliable techniques for chromosome identification is the major obstacle for cytogenetics research in plant species with large numbers of small chromosomes. To promote molecular cytogenetics research of potato (Solanum tuberosum, 2n = 4x = 48) we developed a bacterial artificial chromosome (BAC) library of a diploid potato species S. bulbocastanum. The library consists of 23,808 clones with an average insert size of 155 kb, and represents approximately 3.7 equivalents to the potato genome. The majority of the clones in the BAC library generated distinct signals on specific potato chromosomes using fluorescence in situ hybridization (FISH). The hybridization signals provide excellent cytological markers to tag individual potato chromosomes. We also demonstrated that the BAC clones can be mapped to specific positions on meiotic pachytene chromosomes. The excellent resolution of pachytene FISH can be used to construct a physical map of potato by mapping molecular marker-targeted BAC clones on pachytene chromosomes.  相似文献   

17.
Integration of the FISH pachytene and genetic maps of Medicago truncatula   总被引:6,自引:0,他引:6  
A molecular cytogenetic map of Medicago truncatula (2n = 2x = 16) was constructed on the basis of a pachytene DAPI karyogram. Chromosomes at this meiotic prophase stage are 20 times longer than at mitotic metaphase, and display a well differentiated pattern of brightly fluorescing heterochromatin segments. We describe here a pachytene karyogram in which all chromosomes can be identified based on chromosome length, centromere position, heterochromatin patterns, and the positions of three repetitive sequences (5S rDNA, 45S rDNA and the MtR1 tandem repeat), visualized by fluorescence in situ hybridization (FISH). We determined the correlation between genetic linkage groups and chromosomes by FISH mapping of bacterial artificial chromosome (BAC) clones, with two to five BACs per linkage group. In the cytogenetic map, chromosomes were numbered according to their corresponding linkage groups. We determined the relative positions of the 20 BACs and three repetitive sequences on the pachytene chromosomes, and compared the genetic and cytological distances between markers. The mapping resolution was determined in a euchromatic part of chromosome 5 by comparing the cytological distances between FISH signals of clones of a BAC contig with their corresponding physical distance, and showed that resolution in this region is about 60 kb. The establishment of this FISH pachytene karyotype, with a far better mapping resolution and detection sensitivity compared to those in the highly condensed mitotic metaphase complements, has created the basis for the integration of molecular, genetic and cytogenetic maps in M. truncatula.  相似文献   

18.
Danilova TV  Birchler JA 《Chromosoma》2008,117(4):345-356
To study the correlation of the sequence positions on the physical DNA finger print contig (FPC) map and cytogenetic maps of pachytene and somatic maize chromosomes, sequences located along the chromosome 9 FPC map approximately every 10 Mb were selected to place on maize chromosomes using fluorescent in situ hybridization (FISH). The probes were produced as pooled polymerase chain reaction products based on sequences of genetic markers or repeat-free portions of mapped bacterial artificial chromosome (BAC) clones. Fifteen probes were visualized on chromosome 9. The cytological positions of most sequences correspond on the pachytene, somatic, and FPC maps except some probes at the pericentromeric regions. Because of unequal condensation of mitotic metaphase chromosomes, being lower at pericentromeric regions and higher in the arms, probe positions are displaced to the distal ends of both arms. The axial resolution of FISH on somatic chromosome 9 varied from 3.3 to 8.2 Mb, which is 12-30 times lower than on pachytene chromosomes. The probe collection can be used as chromosomal landmarks or as a "banding paint" for the physical mapping of sequences including transgenes and BAC clones and for studying chromosomal rearrangements.  相似文献   

19.
BAC FISH (fluorescence in situ hybridization using bacterial artificial chromosome probes) is a useful cytogenetic technique for physical mapping, chromosome marker screening, and comparative genomics. As a large genomic fragment with repetitive sequences is inserted in each BAC clone, random BAC FISH without adding competitive DNA can unveil complex chromosome organization of the repetitive elements in plants. Here we performed the comparative analysis of the random BAC FISH in monocot plants including species having small chromosomes (rice and asparagus) and those having large chromosomes (hexaploid wheat, onion, and spider lily) in order to understand a whole view of the repetitive element organization in Poales and Asparagales monocots. More unique and less dense dispersed signals of BAC FISH were observed in species with smaller chromosomes in both the Poales and Asparagales species. In the case of large-chromosome species, 75-85% of the BAC clones were detected as dispersed repetitive FISH signals along entire chromosomes. The BAC FISH of Lycoris did not even show localized repetitive patterns (e.g., centromeric localization) of signals.  相似文献   

20.
A total of 55 expressed sequence tags (ESTs) randomly chosen from our collection of fetal liver ESTs were mapped to chromosomes by fluorescence in situ hybridization (FISH) mapping techniques. To generate FISH mapping probes, the genomic DNAs for each EST were selected by screening an arrayed human bacterial artificial chromosome (BAC) library. In total, 73 BACs were used for mapping of the 55 ESTs. Among them, 70 BACs representing 52 ESTs unequivocally mapped to single chromosomal regions. The remaining 3 BACs representing 3 ESTs were localized to multiple regions, suggesting that BACs may have very low chimerism. Our mapping results were compared with EST mapping databases deposited in NCBI. Thirty-six of 55 ESTs corresponded to previously mapped positions of ESTs, 2 ESTs mapped to different positions from previously determined ones, and it was found that 17 ESTs have been mapped on new locations from this study. These mapping data may be used for completing the framework of the human physical map, and also for providing a good starting point for searching disease-related genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号