首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Ceramide and other sphingolipids are now recognized as novel intracellular signal mediators. One of the important and regulated steps in the metabolism of sphingolipids is the hydrolysis of sphingomyelin into ceramide by sphingomyelinases. Whereas some studies suggest a role for acid sphingomyelinase in cell regulation, several lines of investigation suggest that neutral sphingomyelinase (N-SMase) plays a critical role in stress responses including apoptosis. Recently the advanced purification of neutral membrane-bound magnesium-dependent sphingomyelinase from rat brain was reported on. The specific activity of the purified N-SMase was increased by approximately 3000-fold over the rat brain homogenate, and it is specifically activated by phosphatidylserine. In cells, N-SMase may be coupled to either the redox state and/or glutathione metabolism. The significance of N-SMase and ceramide in stress responses is discussed.  相似文献   

2.
3.
Activation of caspases is commonly involved in the apoptosis induced by various anticancer drugs. However, the upstream events leading to the activation of caspases seem to be specific to each anticancer drug. In the present study, we examined the possible involvement of protein kinase C (PKC) and ceramide generation in caspase-3(-like) protease activation induced by inostamycin, a phosphatidylinositol synthesis inhibitor. Treatment of cells with 12-O-tetradecanoyl phorbol-13-acetate (TPA), an activator of PKC, suppressed the release of cytochrome c from mitochondria and the activation of caspase-3(-like) proteases in inostamycin-treated cells, but not in other anticancer drug-treated cells. Inostamycin induced the elevation of intracellular ceramide levels, and fumonisin B1, an inhibitor of ceramide synthase, inhibited inostamycin-induced cytochrome c release, caspase-3(-like) protease activation, and apoptosis. Moreover, TPA also inhibited inostamycin-induced ceramide synthesis. Taken together, our results suggest that inostamycin-induced apoptosis is mediated by PKC-regulated ceramide generation, leading to the activation of a caspase cascade.  相似文献   

4.
Coenzyme Q (CoQ) is the key factor for the activity of the eukaryotic plasma membrane electron transport chain. Consequently, CoQ is essential in the cellular response against redox changes affecting this membrane. Serum withdrawal induces a mild oxidative stress, which produces lipid peroxidation in membranes. In fact, apoptosis induced by serum withdrawal can be prevented by several antioxidants including CoQ. Also, CoQ can maintain cell growth in serum-limiting conditions, whereas plasma membrane redox system (PMRS) inhibitors such as capsaicin, which compete with CoQ, inhibit cell growth and induce apoptosis. To understand how plasma membrane CoQ prevents oxidative stress-induced apoptosis we have studied the induction of apoptosis by serum withdrawal in CEM cells and its modulation by CoQ. Serum-withdrawal activates neutral sphingomyelinase (N-SMase), ceramide release and caspase-3-related proteases. CoQ addition to serum-free cultures inhibited a 60% N-SMase activation, an 80% ceramide release, and a 50% caspase-3 activity induced by serum deprivation. Caspase activation dependent on ceramide release since C 2 -ceramide was only able to mimic this effect in 10% foetal calf serum cultured cells but not in serum-free cultures. Also, in vitro experiments demonstrated that C 2 -ceramide and ceramide-rich lipid extracts directly activated caspase-3. Taken together, our results indicate that CoQ protects plasma membrane components and controls stress-mediated lipid signals by its participation in the PMRS.  相似文献   

5.
Tumor necrosis factor alpha (TNF) or cytotoxic anti-Fas antibodies lead to the activation of apoptotic proteases (caspases) and to sphingomyelinase-mediated ceramide generation. Caspases and ceramide are both known to induce apoptosis on its own, but their relative contribution to Fas- and TNF-induced cell death is not well established. We report here that rapid apoptosis induced by TNF in U937 cells or anti-Fas in Jurkat cells, in the presence of cycloheximide, induced only a very low increase (<20%) in the cell ceramide content. Neither treatment with inhibitors of sphingomyelinases nor incubation of cells with fumonisin B1, which inhibits de novo ceramide synthesis, prevented TNF and Fas-mediated apoptosis. Increasing or depleting the cell ceramide content by prolonged culture in the presence of monensin or fumonisin B1, respectively, did not prevent TNF and Fas-mediated apoptosis. Treatment of cells with sphingomyelinase inhibitors did not affect to the activation of CPP32 (caspase-3) induced by TNF or anti-Fas antibodies. Chromatin condensation and fragmentation in cells treated with anti-Fas or TNF was abrogated by peptide inhibitors of caspases, which also inhibited Fas-, but not TNF-induced cell death. These results indicate that while ceramide does not seem to act as a critical mediator of TNF and Fas-induced apoptosis, it is generated as a consequence of CPP32 activation and could contribute to the spread of the intracellular death signal.  相似文献   

6.
Crocin is a pharmacologically active component of Crocus sativus L. (saffron) that has been used in traditional Chinese medicine. In a previous study, we demonstrated that crocin inhibits apoptosis in PC-12 cells by affecting the function of tumor necrosis factor-alpha. In this study, we found that depriving cultured PC-12 cells of serum/glucose causes a rapid increase in cellular ceramide levels, followed by an increase in the phosphorylation of c-jun kinase (JNK). The accumulation of ceramide was found to depend on the activation of magnesium-dependent neutral sphingomyelinase (N-SMase), but not on de novo synthesis. The serum/glucose-deprived PC-12 cells also decreased the cellular levels of glutathione (GSH), which is the potent inhibitor of N-SMase. Treating the PC-12 cells with crocin prevented N-SMase activation, ceramide production, and JNK phosphorylation. We also found that the chemical can enhance the activities of GSH reductase and gamma-glutamylcysteinyl synthase (gamma-GCS), contributing to a stable GSH supply that blocks the activation of N-SMase. Thus our data suggest that crocin combats the serum/glucose deprivation-induced ceramide formation in PC-12 cells by increasing GSH levels and prevents the activation of JNK pathway, which is reported to have a role of the signaling cascade downstream ceramide for neuronal cell death.  相似文献   

7.
There is strong evidence indicating a role for ceramide as a second messenger in processes such as apoptosis, cell growth and differentiation, and cellular responses to stress. Ceramide formation from the hydrolysis of sphingomyelin is considered to be a major pathway of stress-induced ceramide production with magnesium-dependent neutral sphingomyelinase (N-SMase) identified as a prime candidate in this pathway. The recent cloning of a mammalian N-SMase-nSMase2- and generation of nSMase2 knockout/mutant mice have now provided vital tools with which to further study the regulation and roles of this enzyme in both a physiological and pathological context. In the present review, we summarize current knowledge on N-SMase relating this to what is known about nSMase2. We also discuss the future areas of nSMase2 research important for molecular understanding of this enzyme and its physiological roles.  相似文献   

8.
There is strong evidence indicating a role for ceramide as a second messenger in processes such as apoptosis, cell growth and differentiation, and cellular responses to stress. Ceramide formation from the hydrolysis of sphingomyelin is considered to be a major pathway of stress-induced ceramide production with magnesium-dependent neutral sphingomyelinase (N-SMase) identified as a prime candidate in this pathway. The recent cloning of a mammalian N-SMase-nSMase2- and generation of nSMase2 knockout/mutant mice have now provided vital tools with which to further study the regulation and roles of this enzyme in both a physiological and pathological context. In the present review, we summarize current knowledge on N-SMase relating this to what is known about nSMase2. We also discuss the future areas of nSMase2 research important for molecular understanding of this enzyme and its physiological roles.  相似文献   

9.
The magnesium-dependent, plasma membrane-associated neutral sphingomyelinase (N-SMase) catalyzes hydrolysis of membrane sphingomyelin to form ceramide, a lipid signaling molecule implied in intracellular signaling. We report here the biochemical purification to apparent homogeneity of N-SMase from bovine brain. Proteins from Nonidet P-40 extracts of brain membranes were subjected to four purification steps yielding a N-SMase preparation that exhibited a specific enzymatic activity 23,330-fold increased over the brain homogenate. When analyzed by two-dimensional gel electrophoresis, the purified enzyme presented as two major protein species of 46 and 97 kDa, respectively. Matrix-assisted laser desorption/ionization-mass spectrometry analysis of tryptic peptides revealed at least partial identity of these two proteins. Amino acid sequencing of tryptic peptides showed no apparent homologies of bovine N-SMase to any known protein. Peptide-specific antibodies recognized a single 97-kDa protein in Western blot analysis of cell lysates. The purified enzyme displayed a K(m) of 40 microM for sphingomyelin with an optimal activity at pH 7-8. Bovine brain N-SMase was strictly dependent on Mg(2+), whereas Zn(2+) and Ca(2+) proved inhibitory. The highly purified bovine N-SMase was effectively blocked by glutathione and scyphostatin. Scyphostatin proved to be a potent inhibitor of N-SMase with 95% inhibition observed at 20 microM scyphostatin. The results of this study define a N-SMase that fulfills the biochemical and functional criteria characteristic of the tumor necrosis factor-responsive membrane-bound N-SMase.  相似文献   

10.
Drug-induced interphasic apoptosis in human leukemia cells is mediated through intracellular signaling pathways, of which the most proximal (initiating) event remains unclear. Indeed, both early ceramide generation and procaspase-8 cleavage have been individually identified as the initial apoptotic signaling events which precede the mitochondrial control of the apoptotic execution phase in Type II cells. In order to evaluate whether or not procaspase-8 cleavage is requisite for initial ceramide generation and rapid interphasic apoptosis, we investigated the chronological ordering of early ceramide generation and caspase-8 cleavage induced by daunorubicin (DNR) and 1-beta-D-arabinofuranosylcytosine (Ara-C) in U937 cells. We further evaluated the impact of these two drugs on initial ceramide generation and apoptosis in wild-type Jurkat cells and Jurkat clones mutated for caspase-8 and Fas-associated death domain. We show that while both DNR and Ara-C similarly induced early ceramide generation (within 5-20 min) and interphasic apoptosis in all cell models, caspase-8 cleavage was only observed farther downstream (4.5 h) and only in DNR-treated cells. Furthermore, neither DNR or Ara-C induced caspase-8 activation. These results demonstrate that caspase-8 cleavage is not requisite for the drug-induced activation of the ceramide-mediated interphasic apoptotic pathway in human Type II leukemic cells.  相似文献   

11.
Neutral sphingomyelinase: past, present and future   总被引:2,自引:0,他引:2  
Sphingomyelin and its metabolic products are now known to have second messenger functions in a variety of cellular signaling pathways. At the epicenter of the sphingomyelin--cell signaling pathway is a family of phospholipases called sphingomyelinases. These enzymes cleave sphingomyelin to produce ceramide and phosphocholine. Ceramide in turn serves as a lipid second messenger that induces a variety of cell regulatory phenomenon such as programmed cell death (apoptosis), cell differentiation, cell proliferation, and sterol homeostasis. Neutral sphingomyelinase (N-SMase) is a Mg2+ sensitive enzyme that can be activated by a host of physiologically relevant and structurally diverse molecules like tumor necrosis factor-alpha (TNF-alpha), oxidized human low density lipoproteins (Ox-LDL), and several growth factors. Large amounts of ceramide accumulate in human fatty streaks and plaques along with Ox-LDL, growth factors, and proinflammatory cytokines in human atherosclerosis. A further role of ceramide and N-SMase in atherosclerosis was uncovered by the finding that Ox-LDL and TNF-alpha stimulated N-SMase activity. In turn, ceramide and/or a homolog serves as an important stress signaling molecule in signal transduction, which leads to apoptosis. Interestingly, an antibody against N-SMase can abrogate Ox-LDL and TNF-alpha induced apoptosis, and therefore may be useful for additional studies of apoptosis in experimental animals. Overexpression of recombinant human N-SMase in human aortic smooth muscle cells markedly stimulate apoptosis, presumably via the multioligomerization of the 'death domain'. Since plaque stability is an integral aspect of atherosclerosis management, activation of N-SMase and subsequent apoptosis may be vital events in the onset of plaque rupture, stroke and heart failure. In contrast to these observations in human hepatocytes, TNF-alpha mediated N-SMase activation did not induce apoptosis. Rather it stimulated the maturation of sterol regulatory element (SRE) binding protein (SREBP-1). Moreover, a cell permeable ceramide was found to reconstitute the phenomenon above in a sterol-independent fashion. These findings provide alternate avenues for therapy of patients with hypercholesterolemia and atherosclerosis. The findings reported here suggests that N-SMase plays important cell regulatory roles and provide an exciting opportunity to further these findings to understand the pathophysiology of human disease states.  相似文献   

12.
Endoplasmic reticulum (ER) stress and excessive nitric oxide production via the induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of ocular diseases characterized by retinal degeneration. Previous studies have revealed the sphingomyelinase/ceramide pathway in the regulation of NOS2 induction. Thus, the objective of this study was to determine the activity of the sphingomyelinase/ceramide pathway, assess nitric oxide production, and examine apoptosis in human retinal pigment epithelial (RPE) cells undergoing ER stress. Sphingomyelinase (SMase) activity; nuclear factor κB (NF-κB) activation; NOS2, nitrite/nitrate, and nitrotyrosine levels; and apoptosis were determined in cultured human RPE cell lines subjected to ER stress via exposure to tunicamycin. Induction of ER stress was confirmed by increased intracellular levels of ER stress markers including phosphorylated PKR-like ER kinase, C/EBP-homologous protein, and 78-kDa glucose-regulated protein. ER stress increased nuclear translocation of NF-κB, NOS2 expression, nitrite/nitrate levels, and nitrotyrosine formation and caused apoptosis in RPE cell lines. Inhibition of neutral SMase (N-SMase) activity via GW 4869 treatment caused a significant reduction in nuclear translocation of NF-κB, NOS2 expression, nitrite/nitrate levels, nitrotyrosine formation, and apoptosis in ER-stressed RPE cells. In conclusion, N-SMase inhibition reduced nitrative stress and apoptosis in RPE cells undergoing ER stress. Obtained data suggest that NOS2 can be regulated by N-SMase in RPE cells experiencing ER stress.  相似文献   

13.
Ceramide is a second messenger induced by various cellular insults that plays a regulatory role in apoptosis. The objective of the present study was to determine whether ceramide signaling can occur in the preimplantation embryo by testing (1) effects of ceramide on development, cytokinesis, and apoptosis and (2) whether heat shock, which can induce apoptosis in embryos, causes activation of neutral or acidic sphingomyelinases responsible for generation of ceramide. Treatment of embryos > or =16 cells collected at Day 5 after insemination with 50 microM C(2)-ceramide increased caspase-9 activity and the proportion of blastomeres undergoing apoptosis but did not increase caspase-8 activity. Induction of apoptosis was more extensive when culture with ceramide was for 24 hr than for 9 hr. Ceramide also reduced the proportion of embryos that developed to the blastocyst stage when exposure was for 24 hr. At the two-cell stage, a period in development when apoptosis responses are blocked, culture of embryos with ceramide did not increase caspase-9 activity or the proportion of blastomeres that were apoptotic. However, culture with ceramide for 24 hr reduced cell proliferation and caused an increase in multinucleated cells because of inhibition of cytokinesis. Exposure of Day 5 embryos to a heat shock of 41 degrees C for 15 hr increased neutral sphingomyelinase activity but did not change acid sphingomyelinase activity. In conclusion, ceramide can regulate embryo development and apoptosis in a time and stage-of-development dependent manner and ceramide generation can be activated by cellular insult. Thus, the ceramide signaling pathway is present in the preimplantation embryo.  相似文献   

14.
Lactosylceramide (LacCer) is a member of the glycosphingolipid family which has been recently recognized as a signaling intermediate in the regulation of cell proliferation and cell adhesion. In this paper, we present our studies pointing to a potential role of LacCer in inducing apoptosis. In our studies we employed a human osteosarcoma cell line MG-63 (wild type, WT) and a neutral sphingomyelinase (N-SMase) deficient cell line CC derived from MG-63 (mutant) cells. We observed that WT cells were highly sensitive to tumor necrosis factor-α (TNF-α), ceramide and LacCer-induced apoptosis. In contrast, the mutant cells were insensitive to TNF-α-induced apoptosis as they did not generate ceramide and LacCer. However, the exogenous supply of ceramide and/or LacCer rendered the mutant cells apoptotic. Interestingly, preincubation of cells with D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), an inhibitor of glucosylceramide synthase and lactosylceramide synthase, abrogated ceramide-induced apoptosis but not LacCer-induced apoptosis in both WT cells and the mutant cells. Moreover, TNF-α and LacCer-induced apoptosis required the generation of reactive oxygen species (ROS) in WT cells. However, since mutant cells did not produce significant amounts of LacCer and ROS in response to TNF-α treatment they are insensitive to TNF-α-induced apoptosis. In summary, our studies suggest that TNF-α-induced N-SMase activation and production of ceramide is required to activate the apoptosis pathway in human osteosarcoma cells. But it is not sufficient to induce apoptosis. Rather, the conversion of ceramide to LacCer and ROS generation are critical for apoptosis.  相似文献   

15.
Mogami K  Kishi H  Kobayashi S 《FEBS letters》2005,579(2):393-397
Neutral sphingomyelinase (N-SMase) elevated nitric oxide (NO) production without affecting intracellular Ca(2+) concentration ([Ca(2+)](i)) in endothelial cells in situ on aortic valves, and induced prominent endothelium-dependent relaxation of coronary arteries, which was blocked by N(omega)-monomethyl-L-arginine, a NO synthase (NOS) inhibitor. N-SMase induced translocation of endothelial NOS (eNOS) from plasma membrane caveolae to intracellular region, eNOS phosphorylation on serine 1179, and an increase of ceramide level in endothelial cells. Membrane-permeable ceramide (C(8)-ceramide) mimicked the responses to N-SMase. We propose the involvement of N-SMase and ceramide in Ca(2+)-independent eNOS activation and NO production in endothelial cells in situ, linking to endothelium-dependent vasorelaxation.  相似文献   

16.
Activation of sphingomyelinase (SMase) by extracellular stimuli is the major pathway for cellular production of ceramide, a bioactive lipid mediator acting through sphingomyelin (SM) hydrolysis. Previously, we reported the existence of six forms of neutral pH–optimum and Mg2+-dependent SMase (N-SMase) in the membrane fractions of bovine brain. Here, we focus on N-SMase ε from salt-extracted membranes. After extensive purification by 12,780-fold with a yield of 1.3%, this enzyme was eventually characterized as N-SMase2. The major single band of 60-kDa molecular mass in the active fractions of the final purification step was identified as heat shock protein 60 (Hsp60) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Proximity ligation assay and immunoprecipitation study showed that Hsp60 interacted with N-SMase2, prompting us to examine the effect of Hsp60 on N-SMase2 and ceramide production. Interestingly, Hsp60 siRNA treatment significantly increased the protein level of N-SMase2 in N-SMase2-overexpressed HEK293 cells. Furthermore, transfection of Hsp60 siRNA into PC12 cells effectively increased both N-SMase activity and ceramide production and increased dopamine re-uptake with paralleled increase. Taken together, these results show that Hsp60 may serve as a negative regulator in N-SMase2-induced dopamine re-uptake by decreasing the protein level of N-SMase2.  相似文献   

17.
Ceramide, a biologically active sphingolipid in cell death signaling, accumulates upon CD95L treatment, concomitantly to apoptosis induction in Jurkat leukemia T cells. Herein, we show that ceramide did not increase in caspase-8 and -10-doubly deficient Jurkat cells in response to CD95L, indicating that apical caspases are essential for CD95L-triggered ceramide formation. Jurkat cells are typically defined as type 2 cells, which require the activation of the mitochondrial pathway for efficient apoptosis induction in response to CD95L. Caspase-9-deficient Jurkat cells significantly resisted CD95L-induced apoptosis, despite ceramide accumulation. Knock-down of sphingomyelin synthase 1, which metabolizes ceramide to sphingomyelin, enhanced (i) CD95L-triggered ceramide production, (ii) cytochrome c release from the mitochondria and (iii) caspase-9 activation. Exogenous ceramide-induced caspase-3 activation and apoptosis were impaired in caspase-9-deficient Jurkat cells. Conversely, caspase-9 re-expression in caspase-9-deficient Jurkat cells restored caspase-3 activation and apoptosis upon exogenous ceramide treatment. Collectively, our data provide genetic evidence that CD95L-triggered endogenous ceramide increase in Jurkat leukemia T cells (i) is not a mere consequence of cell death and occurs mainly in a caspase-9-independent manner, (ii) is likely involved in the pro-apoptotic mitochondrial pathway leading to caspase-9 activation.  相似文献   

18.
Okamoto Y  Obeid LM  Hannun YA 《FEBS letters》2002,530(1-3):104-108
Recent studies demonstrate a role for intracellular oxidation in the regulation of neutral sphingomyelinase (N-SMase). Glutathione (GSH) has been shown to regulate N-SMase in vitro and in cells. However, it has not been established whether the effects of GSH in cells are due to direct action on N-SMase. In this study, treatment of human mammary carcinoma MCF-7 cells with diamide, a thiol-depleting agent, caused a decrease in intracellular GSH and degradation of sphingomyelin (SM) to ceramide. The SM pool hydrolyzed in response to diamide belonged to the bacterial SMase-resistant pool of SM. Importantly, pretreatment of MCF-7 cells with GSH, N-acetylcysteine, an antioxidant, or GW69A, a specific N-SMase inhibitor, prevented diamide-induced degradation of SM to ceramide, suggesting that intracellular levels of GSH regulate the extent to which SM is degraded to ceramide and that this probably involves a GW69A-sensitive N-SMase. Unexpectedly, expression of Bcl-xL prevented tumor necrosis factor--induced SM hydrolysis and ceramide accumulation but not the decrease in intracellular GSH. Furthermore, Bcl-xL inhibited diamide-induced SM hydrolysis and ceramide accumulation but not the decrease in intracellular GSH. These results suggest that the site of action of Bcl-xL is downstream of GSH depletion and upstream of ceramide accumulation, and that GSH probably does not exert direct physiologic effects on N-SMase.  相似文献   

19.
Previous studies have revealed the activation of neutral sphingomyelinase (N-SMase)/ceramide pathway in hepatic tissue following warm liver ischemia reperfusion (IR) injury. Excessive ceramide accumulation is known to potentiate apoptotic stimuli and a link between apoptosis and endoplasmic reticulum (ER) stress has been established in hepatic IR injury. Thus, this study determined the role of selective N-SMase inhibition on ER stress and apoptotic markers in a rat model of liver IR injury. Selective N-SMase inhibitor was administered via intraperitoneal injections. Liver IR injury was created by clamping blood vessels supplying the median and left lateral hepatic lobes for 60?min, followed by 60?min reperfusion. Levels of sphingmyelin and ceramide in liver tissue were determined by an optimized multiple reactions monitoring (MRM) method using ultrafast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Spingomyelin levels were significantly increased in all IR groups compared with controls. Treatment with a specific N-SMase inhibitor significantly decreased all measured ceramides in IR injury. A significant increase was observed in ER stress markers C/EBP-homologous protein (CHOP) and 78?kDa glucose-regulated protein (GRP78) in IR injury, which was not significantly altered by N-SMase inhibition. Inhibition of N-SMase caused a significant reduction in phospho-NF-kB levels, hepatic TUNEL staining, cytosolic cytochrome c, and caspase-3, -8, and -9 activities which were significantly increased in IR injury. Data herein confirm the role of ceramide in increased apoptotic cell death and highlight the protective effect of N-SMase inhibition in down-regulation of apoptotic stimuli responses occurring in hepatic IR injury.  相似文献   

20.
Febrile hyperthermia enhanced TNF-stimulated apoptosis of MCF-7 cells and overcame resistance in a TNF-resistant, MCF-7 variant (3E9), increasing their TNF-sensitivity by 10- and 100-fold, respectively. In either cell line, the hyperthermic potentiation was attributable to increased apoptosis that was totally quenched by caspase inhibition. In MCF-7 cells, hyperthermic potentiation of apoptosis was associated with sustained activation of upstream caspases in response to TNF and more prominent engagement of the intrinsic apoptotic pathway. Apoptotic enhancement by hyperthermia was primarily mediated by caspase-8 activation, as the specific inhibitor, Z-IETD, blocked cell death, whereas direct engagement of the intrinsic apoptotic pathway (with doxorubicin) was not affected. In 3E9 cells, hyperthermia alone induced activation of caspase-8, and was further enhanced by TNF. In 3E9 cells, hyperthermia caused TNF-dependent loss of mitochondrial membrane potential and activation of capspase-9 that was initiated and dependent on upstream caspases. MCF-7 and 3E9 cells were equally sensitive to exogenous C(6)-ceramide, but mass spectroscopic analysis of ceramide species indicated that total ceramide content was not enhanced by TNF and/or hyperthermia treatment, and that the combination of TNF and hyperthermia caused only modest elevation of one species (dihydro-palmitoyl ceramide). We conclude that febrile hyperthermia potentiates apoptosis of MCF-7 cells and overcomes TNF-resistance by sustained activation of caspase-8 and engagement of the intrinsic pathway that is independent of ceramide flux. This report provides the first evidence for regulation of caspase-dependent apoptosis by febrile hyperthermia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号