首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fig-pollinating wasps lay their eggs in fig flowers. Some species of fig-pollinating wasps are active pollinators, while others passively transfer pollen. In dioecious fig species, the ovules of male figs produce wasps but no seeds. By observations and experiments on four dioecious Ficus species we show that (i) passive pollinators distribute pollen haphazardly within figs, but fertilization of female flowers in male figs is inhibited. Consequently, wasp larvae will develop in nonfertilized ovules: they cannot benefit from pollination; (ii) active pollinators efficiently fertilize flowers in which they oviposit. Lack of pollination increases larval mortality. Hence, fig pollinators are not obligate seed eaters but ovule gallers. Active pollination has probably evolved as a way to improve progeny nourishment.
Comparison of pollination and oviposition process in male and female figs, suggests that stigma shape and function have coevolved with pollination behaviour, in relation to constraints linked with dioecy.  相似文献   

2.
薜荔和爱玉子均属雌雄异株桑科榕属植物,两者互为原变种与变种的关系,分别与薜荔传粉小蜂和爱玉子传粉小蜂(二者互为隐存种)建立了专性共生关系,榕树榕果挥发物在维系传粉小蜂与其寄主的共生关系上起着重要作用。利用Y型嗅觉仪测定薜荔榕小蜂(薜荔和爱玉子的传粉小蜂)对薜荔和爱玉子雌花期榕果挥发物的行为反应。结果表明:(1)雌花期果型的大小对薜荔榕小蜂行为反应无显著影响,薜荔大、小果型雌花期雌(雄)榕果挥发物对其传粉小蜂均具有强烈的吸引作用;(2)榕果挥发物浓度影响薜荔榕小蜂行为反应,薜荔、爱玉子雌花期雌(雄)榕果挥发物对其传粉小蜂的吸引作用均可能存在阈值反应,即榕果挥发物浓度未超过阈值时,雌花期榕果挥发物对传粉小蜂的吸引作用与挥发物浓度成正相关关系,而一旦超过阈值,榕果挥发物对传粉蜂的吸引作用显著下降,表明寄主榕果挥发物浓度影响传粉小蜂的寄主定位;(3)薜荔传粉小蜂对低浓度爱玉子雌花期雌(雄)榕果挥发物、爱玉子传粉小蜂对低浓度薜荔雌花期雌(雄)榕果挥发物均既无趋向也无驱避行为;薜荔传粉小蜂对高浓度的爱玉子雌花期雌(雄)榕果挥发物表现为显著的驱避行为,而爱玉子传粉小蜂对高浓度薜荔雌(雄)雌花期榕果挥发物表现为显著的趋向行为,因此,薜荔传粉小蜂与爱玉子传粉小蜂存在寄主专一性不对称现象,爱玉子传粉小蜂进入薜荔雌(雄)果内传粉或产卵的可能性较大,而福州地区的薜荔传粉小蜂可能难以进入爱玉子雌(雄)果内传粉或产卵。本研究结果将为榕-蜂共生体系的化学生态学理论研究以及爱玉子栽培提供科学依据。  相似文献   

3.
【目的】榕树(Ficus)依赖专性榕小蜂(Agaonidae)传粉,同时为传粉榕小蜂提供繁衍后代的场所,两者形成动植物间经典的协同进化关系。在雌花期果内,榕小蜂需在有限的存活时间内完成传粉和产卵,而传粉榕小蜂如何在传粉与产卵之间进行权衡仍然是悬而未解的问题。本研究旨在明确传粉榕小蜂——一种栉颚榕小蜂Ceratosolen sp.在雌雄同株的聚果榕Ficus racemosa雌花期果内的行为活动及繁殖模式。【方法】借助测微尺测量聚果榕榕果雌花花柱长度与传粉榕小蜂(Ceratosolen sp.)产卵器长度,通过显微视频记录传粉榕小蜂在雌花期果内搜索、传粉及产卵行为;结合单果控制性引蜂试验,测定不同阶段榕小蜂个体大小、孕卵量、携粉量,以及雄花期最终繁殖的榕小蜂后代和榕果种子数量。【结果】聚果榕雌花花柱长度存在树间变异,榕小蜂产卵器长度比绝大多数的雌花花柱长,说明该小蜂可以产卵于大部分的雌花子房里。通常个体大的榕小蜂孕卵量更多,但个体大小与携粉量之间相关性不显著。观察发现,榕小蜂进入雌花期榕果内,前6 h集中产卵,可产下孕卵量的95%,平均搜索用时27 s,产卵用时46 s,此期间传粉行为少见,花粉筐中携带花粉量亦无明显变化;榕小蜂进果后6-24 h,主要执行传粉,其行为主动,连贯高效,单次传粉用时平均为2 s,最终可传完携粉量的80%。控制引蜂试验也证实榕小蜂进入榕果内前6 h主要执行产卵繁殖后代,之后6-24 h主要执行传粉以繁殖榕树种子。【结论】在雌雄同株的聚果榕雌花期榕果内,榕小蜂先产卵、后传粉。本研究首次展示了传粉榕小蜂在聚果榕雌花期榕果内的产卵和传粉行为,并获得与行为相匹配的产卵量和传粉繁殖量,反映了具主动传粉行为的榕小蜂在传粉和产卵之间存在时间和数量上的权衡。  相似文献   

4.
The nursery pollination system of fig trees (Ficus) results in the plants providing resources for pollinator fig wasp larvae as part of their male reproductive investment, with selection determining relative investment into pollinating wasps and the pollen they carry. The small size of Ficus pollen suggests that the quantities of pollen transported by individual wasps often limits male reproductive success. We assessed variation in fig wasp pollen loads and its influence on seed production in actively pollinated (Ficus montana) and passively pollinated (Ficus carica) dioecious fig trees.The ratios of number of male flowers on number of female flowers in a glasshouse-maintained F. montana population were highly variable. When fig wasps were introduced into receptive female figs, the resulting seed numbers were strongly linked to the numbers of pollinators that had been seeking access to pollen, relative to the number of anthers in their natal figs. In F. carica estimates of the amounts of pollen produced per fig and the quantities of pollen carried by emerging fig wasps suggest that less than 10% of the pollen is transported. Pollinators of F. carica that emerged earlier from figs carried more pollen, and also generated more seeds when introduced into receptive female figs.We show here that all pollinators are not equally valuable and producing more pollinators is not necessarily a good option in terms of Ficus male fitness. Previous results on F. montana figs showed that only around half of the flowers where pollinators lay eggs produced adult offspring. The amount of pollen collected by young female fig wasps may be a major determinant of their reproductive success.  相似文献   

5.
In the dioecious fig/pollinator mutualism, the female wasps that pollinate figs on female trees die without reproducing, whereas wasps that pollinate figs on male trees produce offspring. Selection should strongly favour wasps that avoid female figs and enter only male figs. Consequently, fig trees would not be pollinated and fig seed production would ultimately cease, leading to extinction of both wasp and fig. We experimentally presented pollinators in the wild (southern India) with a choice between male and female figs of a dioecious fig species, Ficus hispida L. Our results show that wasps do not systematically discriminate between sexes of F. hispida. We propose four hypotheses to explain why wasp choice has not evolved, and how a mutualism is thus maintained in which all wasps that pollinate female figs have zero fitness.  相似文献   

6.
Yu H  Compton SG 《PloS one》2012,7(1):e30833
Figs are the inflorescences of fig trees (Ficus spp., Moraceae). They are shaped like a hollow ball, lined on their inner surface by numerous tiny female flowers. Pollination is carried out by host-specific fig wasps (Agaonidae). Female pollinators enter the figs through a narrow entrance gate and once inside can walk around on a platform generated by the stigmas of the flowers. They lay their eggs into the ovules, via the stigmas and styles, and also gall the flowers, causing the ovules to expand and their pedicels to elongate. A single pollinator larva develops in each galled ovule. Numerous species of non-pollinating fig wasps (NPFW, belonging to other families of Chalcidoidea) also make use of galled ovules in the figs. Some initiate galls, others make use of pollinator-generated galls, killing pollinator larvae. Most NPFW oviposit from the outside of figs, making peripherally-located pollinator larvae more prone to attack. Style length variation is high among monoecious Ficus spp. and pollinators mainly oviposit into more centrally-located ovules, with shorter styles. Style length variation is lower in male (wasp-producing) figs of dioecious Ficus spp., making ovules equally vulnerable to attack by NPFW at the time that pollinators oviposit. We recorded the spatial distributions of galled ovules in mature male figs of the dioecious Ficus hirta in Southern China. The galls contained pollinators and three NPFW that kill them. Pollinators were concentrated in galls located towards the centre of the figs, NPFW towards the periphery. Due to greater pedicel elongation by male galls, male pollinators became located in more central galls than their females, and so were less likely to be attacked. This helps ensure that sufficient males survive, despite strongly female-biased sex ratios, and may be a consequence of the pollinator females laying mostly male eggs at the start of oviposition sequences.  相似文献   

7.
The obligate mutualism between pollinating fig wasps in the family Agaonidae (Hymenoptera: Chalcidoidea) and Ficus species (Moraceae) is often regarded as an example of co-evolution but little is known about the history of the interaction, and understanding the origin of functionally dioecious fig pollination has been especially difficult. The phylogenetic relationships of fig wasps pollinating functionally dioecious Ficus were inferred from mitochondrial cytochrome oxidase gene sequences (mtDNA) and morphology. Separate and combined analyses indicated that the pollinators of functionally dioecious figs are not monophyletic. However, pollinator relationships were generally congruent with host phylogeny and support a revised classification of Ficus. Ancestral changes in pollinator ovipositor length also correlated with changes in fig breeding systems. In particular, the relative elongation of the ovipositor was associated with the repeated loss of functionally dioecious pollination. The concerted evolution of interacting morphologies may bias estimates of phylogeny based on female head characters, but homoplasy is not so strong in other morphological traits. The lesser phylogenetic utility of morphology than of mtDNA is not due to rampant convergence in morphology but rather to the greater number of potentially informative characters in DNA sequence data; patterns of nucleotide substitution also limit the utility of mtDNA findings. Nonetheless, inferring the ancestral associations of fig pollinators from the best-supported phylogeny provided strong evidence of host conservatism in this highly specialized mutualism.  相似文献   

8.
Pollination and parasitism in functionally dioecious figs   总被引:17,自引:0,他引:17  
Fig wasps (Agaonidae: Hymenoptera) are seed predators and their interactions with Ficus species (Moraceae) range from mutualism to parasitism. Recently considerable attention has been paid to conflicts of interest between the mutualists and how they are resolved in monoecious fig species. However, despite the fact that different conflicts can arise, little is known about the factors that influence the persistence of the mutualism in functionally dioecious Ficus. We studied the fig pollinator mutualism in 14 functionally dioecious fig species and one monoecious species from tropical lowland rainforests near Madang, Papua New Guinea. Observations and experiments suggest that (i) pollinating wasps are monophagous and attracted to a particular host species; (ii) pollinating and non-pollinating wasps are equally attracted to gall (male) figs and seed (female) figs in functionally dioecious species; (iii) differing style lengths between gall figs and seed figs may explain why pollinators do not develop in the latter; (iv) negative density dependence may stabilize the interaction between pollinating wasps and their parasitoids; and (v) seed figs may reduce the search efficiency of non-pollinators. This increased pollinator production without a corresponding decrease in seed production could provide an advantage for dioecy in conditions where pollinators are limiting.  相似文献   

9.
多年来, 不同繁育系统的榕树(Ficus spp.)的进化问题引起生物学家们极大的兴趣。前人通过对不同繁育系统榕树雌花的花柱长度、传粉榕小蜂产卵器长度和繁殖率的比较, 推测榕树的雌雄异株是由雌雄同株进化而来的。为验证这一推论, 选取雌雄同株的垂叶榕(Ficus benjamina)和钝叶榕(F. curtipes)以及雌雄异株的斜叶榕(F. tinctoria)和鸡嗉子榕(F. semicordata), 进行了雌花花柱长度、传粉榕小蜂产卵器长度及繁殖率的比较。研究结果显示: 1)两种雌雄同株榕树的传粉榕小蜂(Eupristina koningsbergeriEupristina sp.)的产卵器长度, 显著长于两种雌雄异株榕树的传粉榕小蜂(Liporrhopalum gibbosaeCeratosolen gravelyi)产卵器的长度, 且雌雄同株榕树雌花花柱长度的变异大于雌雄异株雌花花柱长度的变异; 2)两种雌雄同株榕树的雌花花柱长度呈单峰分布, 且花柱长度的变异大于传粉榕小蜂产卵器长度的变异; 两种雌雄异株榕树花序的雌花花柱长度呈双峰分布, 雌花花柱长度的变异也大于传粉榕小蜂产卵器的长度变异; 3)两种雌雄同株榕树的传粉榕小蜂产卵器长度能到达雌花子房的比例更高, 可更有效地产生瘿花, 而雌雄异株榕树产生种子的优势更强。研究表明: 在传粉榕小蜂产卵器长度及花序雌花花柱分布方面, 雌雄异株榕树有着明显的优势, 但在繁殖率方面没有绝对优势。因此, 前人从雌花花柱分布及繁殖率比较而做出榕树进化的推测并不正确。要真正解决榕树的进化问题, 需要多学科、多指标的综合分析和深入研究。  相似文献   

10.
为了探讨榕树隐头果的发育期、性别、大小等外部特征对传粉榕小蜂选择的影响,采取人为控制雌花期的方法,对鸡嗉子榕(Ficus sermicordata)及其传粉榕小蜂(Ceratosolen gravelyi)的选择行为进行研究。结果表明,在隐头花序发育到雌花期后,如果阻止传粉小蜂进入,隐头果会继续生长。直径较小的雌果和雄果的进蜂量较多,且在雌雄果同时存在时,小蜂仍然会选择进入雌果,但进蜂量显著低于雄果。小蜂优先选择进入雌花期前期的隐头花序,雌雄果皆有此特点。对于相同发育期的隐头果,果径和进蜂量呈正相关关系,说明对于相同发育期的隐头果,小蜂更倾向于进入较大的隐头果。因此,真正控制小蜂行为的是隐头花序所处的发育期,以及不同发育期所产生的化学挥发物,而非隐头果直径大小。这为进一步研究榕-蜂系统的稳定机制提供依据。  相似文献   

11.
Fig trees are pollinated by wasp mutualists, whose larvae consume some of the plant's ovaries. Many fig species (350+) are gynodioecious, whereby pollinators generally develop in the figs of ‘male’ trees and seeds generally in the ‘females.’ Pollinators usually cannot reproduce in ‘female’ figs at all because their ovipositors cannot penetrate the long flower styles to gall the ovaries. Many non-pollinating fig wasp (NPFW) species also only reproduce in figs. These wasps can be either phytophagous gallers or parasites of other wasps. The lack of pollinators in female figs may thus constrain or benefit different NPFWs through host absence or relaxed competition. To determine the rates of wasp occurrence and abundance we surveyed 11 dioecious fig species on Hainan Island, China, and performed subsequent experiments with Ficus tinctoria subsp. gibbosa to identify the trophic relationships between NPFWs that enable development in female syconia. We found NPFWs naturally occurring in the females of Ficus auriculata, Ficus hainanensis and F. tinctoria subsp. gibbosa. Because pollinators occurred only in male syconia, when NPFWs also occurred in female syconia, overall there were more wasps in male than in female figs. Species occurrence concurred with experimental data, which showed that at least one phytophagous galler NPFW is essential to enable multiple wasp species to coexist within a female fig. Individuals of galler NPFW species present in both male and female figs of the same fig species were more abundant in females than in males, consistent with relaxed competition due to the absence of pollinator. However, these wasps replaced pollinators on a fewer than one-to-one basis, inferring that other unknown mechanisms prevent the widespread exploitation by wasps of female figs. Because some NPFW species may use the holes chewed by pollinator males to escape from their natal fig, we suggest that dispersal factors could be involved.  相似文献   

12.
Volatile compounds are often mediators of plant-pollinator interactions. Their emission is presumed to be costly, but this cost has seldom been quantified. Figs of Ficus carica (a dioecious species) release volatile compounds when receptive, thus attracting the agaonid wasp Blastophaga psenes. In dioecious fig species, wasps lay eggs inside male figs and pollinate female ones. For a male tree, we estimated carbon allocation to reproduction using the annual growth module (AGM) as the unit of measurement. Over the growing season, leaf and fig carbon exchange and construction costs were measured, as well as carbon investment in stamens, provisioning pollinators, and biosynthesis and release of volatile compounds. Representativity of the tree studied was evaluated by measuring some of these parameters on seven other male fig trees. The results show that 7.6-16.4% of the carbon assimilated by leaves and figs was invested in reproduction. Of the carbon invested in reproduction, pollinator attraction and feeding represented only 0.08-0.12% and 1.84-2.33%, respectively, while pollinator sheltering (fig construction and respiration) represented 97.6-98.0%. In this strict and coevolved plant-pollinator association, the main male reproductive investment was thus in the structures sheltering the associated pollinators.  相似文献   

13.
研究了西双版纳热带雨林地区雌雄异株植物对叶榕(Ficus hispida L.)的生物学、传粉物候学以及榕小蜂(Ceratosolen solmsi marchali Mayr)的传粉和繁殖行为.研究结果表明:雌雄异株的对叶榕与其他雌雄同株的榕属植物不同,它的种子形成与传粉者有着更为复杂的相互关系.对叶榕一年结隐花果6~8次,结果高峰期4~5次,其中雄性植株仅产生花粉和孕育榕小蜂,而雌性植株(无雄蕊)则需榕小蜂带花粉进入隐花果内,进行传粉授精,使之发育成种子.对叶榕的成熟花粉不能从花药开裂处自行散发出来,必须由榕小蜂采集才能散落.榕小蜂雌蜂羽化、交配后,找到雄花区,用足、触角、口器在推动中采集花粉.雌蜂飞出熟榕果找寻雌株或雄株榕树上的幼嫩隐花果,一般需3~67 min;一部分雌蜂在雄株中寻找幼嫩的隐花果,进去产卵繁殖,另一部分雌蜂则寻找雌株雌花期嫩隐花果进去传粉.雌蜂在雌株榕树的隐花果内传粉时间为15~23 h,在雄株榕树的隐花果内产卵时间为6~9 h.对叶榕小蜂在雌株上进入单个隐花果的数量多少关系到雌花结实率;观察表明,每个隐花果最佳进蜂数为2头;榕小蜂传粉后榕树成熟种子形成率在54.1%~82.5%之间,平均为73.8%;而在雄株上雌蜂进蜂数量则关系到榕小蜂在隐花果内的产卵率,每个隐花果最佳进蜂数为3~4头,产卵率在72.3%~93.8%之间,平均为84.4%.  相似文献   

14.
Abstract. Fig trees ( Ficus ) have closed inflorescences. Closure is an efficient protection of flowers against non-specialist predators and harsh external environmental conditions. Each Ficus species is pollinated by a single insect species, an agaonid wasp, capable of forcing its way through a bract-covered pore, the ostiole, to gain access to the flowers. Figs also provide oviposition sites for the wasps. The fig/pollinator interaction is a classic example of mutualism. It has been widely assumed that, once pollinators have entered a fig, oviposited and pollinated, they die trapped within the fig. In this paper, we present observations under natural conditions and results of field experiments on three very different fig species ( Ficus aurea Nutt., F. carica L. and F. microcarpa L.) showing that some pollinators do exit or try to exit from the fig after pollination and oviposition. Moreover, experimental results demonstrate that in at least one species ( F. carica ), the pollinator is able to oviposit successively in two different figs.
The frequency of re-emergences from figs after pollination varies among species and this may be related to variations in pollination dynamics depending on environmental constraints such as the abundance of trees and tree phenology. Several factors that may favour pollinators that leave figs after pollination and oviposition are discussed. They include competition between pollinators for oviposition sites, and minimising of the risk of vertical transmission of parasites and pathogens.  相似文献   

15.
西双版纳热带雨林对叶榕传粉生物学(英)   总被引:10,自引:0,他引:10  
研究了西双版纳热带雨林地区雌雄异株植物对叶榕 (FicushispidaL .)的生物学、传粉物候学以及榕小蜂(CeratosolensolmsimarchaliMayr)的传粉和繁殖行为。研究结果表明 :雌雄异株的对叶榕与其他雌雄同株的榕属植物不同 ,它的种子形成与传粉者有着更为复杂的相互关系。对叶榕一年结隐花果 6~ 8次 ,结果高峰期 4~ 5次 ,其中雄性植株仅产生花粉和孕育榕小蜂 ,而雌性植株 (无雄蕊 )则需榕小蜂带花粉进入隐花果内 ,进行传粉授精 ,使之发育成种子。对叶榕的成熟花粉不能从花药开裂处自行散发出来 ,必须由榕小蜂采集才能散落。榕小蜂雌蜂羽化、交配后 ,找到雄花区 ,用足、触角、口器在推动中采集花粉。雌蜂飞出熟榕果找寻雌株或雄株榕树上的幼嫩隐花果 ,一般需 3~ 6 7min ;一部分雌蜂在雄株中寻找幼嫩的隐花果 ,进去产卵繁殖 ,另一部分雌蜂则寻找雌株雌花期嫩隐花果进去传粉。雌蜂在雌株榕树的隐花果内传粉时间为 15~ 2 3h ,在雄株榕树的隐花果内产卵时间为 6~ 9h。对叶榕小蜂在雌株上进入单个隐花果的数量多少关系到雌花结实率 ;观察表明 ,每个隐花果最佳进蜂数为 2头 ;榕小蜂传粉后榕树成熟种子形成率在 5 4 .1%~ 82 .5 %之间 ,平均为 73.8% ;而在雄株上雌蜂进蜂数量则关系到榕小蜂在隐花果内的产卵率 ,  相似文献   

16.
1. Figs on male dioecious fig trees (Ficus, Moraceae) are breeding sites for pollinator fig wasps (Hymenoptera, Agaonidae), but figs on female plants are traps that produce only seeds. As the short‐lived fig wasps cannot reproduce in female figs, natural selection should favour individuals that avoid them. Several studies have failed to detect such discrimination, a result attributed to inter‐sexual mimicry and ‘selection to rush’ in the wasps, but their experiments failed to explicitly take into account fig age (how long they had been waiting to be pollinated). 2. We compared the relative attraction of male and female figs of known ages of the South East Asian Ficus montana Burm. f. to its pollina tor Liporrhopalum tentacularis Grandi and examined how the reproductive success of the plant and its pollinator change with the age of the figs. 3. Mean retention time for un‐pollinated figs on female plants was 16 days whereas in male figs it was 12 days. Female figs remained attractive for up to 2 weeks, although the wasps were less willing to enter older figs. After pollinator entry, receptivity continued for several days, lasting longer in figs entered by a single wasp. Consistent with abortion rates, attractiveness persisted longer in female figs. Older figs produced fewer fig wasp offspring, but similar numbers of seeds. 4. The sexual differences in floral longevity in F. montana may represent part of a previously un‐recognised reproductive strategy in some fig trees that allows male plants to ‘export’ pollinators while also maintaining a resident fig wasp population.  相似文献   

17.
Host–parasites interaction is a common phenomenon in nature. Diffusive coevolution might maintain stable cooperation in a fig–fig wasps system, in which the exploiter might diversify their genotype, phenotype, or behavior as a result of competition with pollinator, whereas the figs change flower syconia, fruits thickness, and syconia structure. In functionally dioecious Ficus auriculata, male figs and female figs contain two types of florets on separate plant, and share high similarities in outside morphology. Apocryptophagus (Sycophaginae, Chalcidoidea, Hymenoptera) is one of few groups of nonpollinating fig wasps that can reproduce within both male and female figs. On the basis of the morphology and DNA barcoding, evidence from partial sequences of mitochondrial cytochrome c oxidase I and nuclear internal transcribed spacer 2, we found that there are two nonsibling Apocryptophagus species living on male and female F. auriculata figs, respectively. We estimated that these two species diverged about 19.2 million years ago. Our study suggests that the host shift from Ficus variegate or Ficus prostrata fig species to male figs is a preference way for Apocryptophagus wasps to adapt to the separation of sexual function in diecious figs. Furthermore, to escape the disadvantage or sanction impact of the host, the exploiter Apocryptophagus wasps can preferably adapt to exploiting each sex of the figs, by changing their oviposition, niche shift, and habitat.  相似文献   

18.
Some female pollinating fig wasps (foundresses) re-emerge from figs after oviposition/pollination. We investigated why this occurs in the mutualism between the gynodioecious Ficus montana and Liporrhopalum tentacularis. Re-emergence increased with foundress density in figs and some foundresses oviposited in two male figs, indicating that they re-emerge because of oviposition site limitation. Re-emergence was independent of fig diameter, indicating that permeability is not because of fig age at entry. Rather, as some foundresses also pollinate two female figs we suggest permeability is selected for because it increases pollinator production and/or efficiency (although, potentially opposing these hypotheses, we also found between-tree differences in permeability in male figs). In addition, we show that re-emergence is much more common than previously suspected, and more common from gynodioecious than monoecious fig species. We argue that our findings in F. montana could explain this pattern of incidence.  相似文献   

19.
The host-specific relationship between fig trees (Ficus) and their pollinator wasps (Agaonidae) is a classic case of obligate mutualism. Pollinators reproduce within highly specialised inflorescences (figs) of fig trees that depend on the pollinator offspring for the dispersal of their pollen. About half of all fig trees are functionally dioecious, with separate male and female plants responsible for separate sexual functions. Pollen and the fig wasps that disperse it are produced within male figs, whereas female figs produce only seeds. Figs vary greatly in size between different species, with female flower numbers varying from tens to many thousands. Within species, the number of female flowers present in each fig is potentially a major determinant of the numbers of pollinator offspring and seeds produced. We recorded variation in female flower numbers within male and female figs of the dioecious Ficus montana growing under controlled conditions, and assessed the sources and consequences of inflorescence size variation for the reproductive success of the plants and their pollinator (Kradibia tentacularis). Female flower numbers varied greatly within and between plants, as did the reproductive success of the plants, and their pollinators. The numbers of pollinator offspring in male figs and seeds in female figs were positively correlated with female flower numbers, but the numbers of male flowers and a parasitoid of the pollinator were not. The significant variation in flower number among figs produced by different individuals growing under uniform conditions indicates that there is a genetic influence on inflorescence size and that this character may be subject to selection.  相似文献   

20.
The dioecious Mediterranean fig, Ficus carica, displays a unique phenology in which males sometimes bloom synchronously with females (in summer), and sometimes not (in spring). Ficus carica is engaged in an obligatory mutualism with a specific pollinating wasp, which reproduces only within figs, localising them by their specific scents. We show that scents emitted by male figs show seasonal variation within individual trees. Scents of summer male figs resemble those of the co-flowering females, and are different from those of the same male trees in spring, when female figs are absent. These differences hold even if only compounds electrophysiologically active for pollinators are considered. The similar scents of summer males and females may explain why the rewardless females are still pollinated. These results offer a tractable model for future studies of intersexual chemical mimicry in mutualistic pollination interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号