首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initiation of translation is a fundamental and highly regulated process in gene expression. Translation initiation in prokaryotic systems usually requires interaction between the ribosome and an mRNA sequence upstream of the initiation codon, the so-called ribosome-binding site (Shine-Dalgarno sequence). However, a large number of genes do not possess Shine-Dalgarno sequences, and it is unknown how start codon recognition occurs in these mRNAs. We have performed genome-wide searches in various groups of prokaryotes in order to identify sequence elements and/or RNA secondary structural motifs that could mediate translation initiation in mRNAs lacking Shine-Dalgarno sequences. We find that mRNAs without a Shine-Dalgarno sequence are generally less structured in their translation initiation region and show a minimum of mRNA folding at the start codon. Using reporter gene constructs in bacteria, we also provide experimental support for local RNA unfoldedness determining start codon recognition in Shine-Dalgarno--independent translation. Consistent with this, we show that AUG start codons reside in single-stranded regions, whereas internal AUG codons are usually in structured regions of the mRNA. Taken together, our bioinformatics analyses and experimental data suggest that local absence of RNA secondary structure is necessary and sufficient to initiate Shine-Dalgarno--independent translation. Thus, our results provide a plausible mechanism for how the correct translation initiation site is recognized in the absence of a ribosome-binding site.  相似文献   

2.
The use of several translation initiation codons in a single mRNA, by expressing several proteins from a single gene, contributes to the generation of protein diversity. A small, yet growing, number of mammalian mRNAs initiate translation from a non-AUG codon, in addition to initiating at a downstream in-frame AUG codon. Translation initiation on such mRNAs results in the synthesis of proteins harbouring different amino terminal domains potentially conferring on these isoforms distinct functions. Use of non-AUG codons appears to be governed by several features, including the sequence context and the secondary structure surrounding the codon. Selection of the downstream initiation codon can occur by leaky scanning of the 43S ribosomal subunit, internal entry of ribosome or ribosomal shunting. The biological significance of non-AUG alternative initiation is demonstrated by the different subcellular localisations and/or distinct biological functions of the isoforms translated from the single mRNA as illustrated by the two main angiogenic factor genes encoding the fibroblast growth factor 2 (FGF2) and the vascular endothelial growth factor (VEGF). Consequently, the regulation of alternative initiation of translation might have a crucial role for the biological function of the gene product.  相似文献   

3.
Human T-cell lymphotropic virus type I (HTLV-I) double-spliced mRNA exhibits two GUG and two CUG codons upstream to, and in frame with, the sequences encoding Rex and Tax regulatory proteins, respectively. To verify whether these GUG and CUG codons could be used as additional initiation codons of translation, two chimeric constructs were built for directing the synthesis of either Rex–CAT or Tax–CAT fusion proteins. In both cases, the CAT reporter sequence was inserted after the Tax AUG codon and in frame with either the Rex or Tax AUG codon. Under transient expression of these constructs, other proteins of higher molecular mass were synthesized in addition to the expected Rex–CAT and Tax–CAT proteins. The potential non-AUG initiation codons were exchanged for either an AUG codon or a non-initiation codon. This allowed us to demonstrate that the two GUG codons in frame with the Rex coding sequence, and only the second CUG in frame with the Tax coding sequence, were used as additional initiation codons. In HTLV-I infected cells, two Rex and one Tax additional proteins were detected that exhibited molecular mass compatible with the use of the two GUG and the second CUG as additional initiation codons of translation. Comparison of the HTLV-I proviral DNA sequence with that of other HTLV-related retroviruses revealed a striking conservation of the three non-AUG initiation codons, strongly suggesting their use for the synthesis of additional Rex and Tax proteins.  相似文献   

4.
5.
6.
Only a few cases of exclusive translation initiation at non-AUG codons have been reported. We recently demonstrated that mammalian NAT1 mRNA, encoded by EIF4G2, uses GUG as its only translation initiation codon. In this study, we identified NAT1 orthologs from chicken, Xenopus, and zebrafish and found that in all species, the GUG codon also serves as the initiation codon. In all species, the GUG codon fulfilled the reported requirements for non-AUG initiation: an optimal Kozak motif and a downstream hairpin structure. Site-directed mutagenesis showed that nucleotides at positions -3 and +4 are critical for the GUG-mediated translation initiation in vitro. We found that NAT1 orthologs in Drosophila melanogaster and Halocynthia roretzi also use non-AUG start codons, demonstrating evolutionary conservation of the noncanonical translation initiation.  相似文献   

7.

Background  

The translation start site plays an important role in the control of translation efficiency of eukaryotic mRNAs. The recognition of the start AUG codon by eukaryotic ribosomes is considered to depend on its nucleotide context. However, the fraction of eukaryotic mRNAs with the start codon in a suboptimal context is relatively large. It may be expected that mRNA should possess some features providing efficient translation, including the proper recognition of a translation start site. It has been experimentally shown that a downstream hairpin located in certain positions with respect to start codon can compensate in part for the suboptimal AUG context and also increases translation from non-AUG initiation codons. Prediction of such a compensatory hairpin may be useful in the evaluation of eukaryotic mRNA translation properties.  相似文献   

8.
Properties of mRNA leading regions that modulate protein synthesis are little known (besides effects of their secondary structure). Here I explore how coding properties of leading regions may account for their disparate efficiencies. Trinucleotides that form off frame stop codons decrease costs of ribosomal slippages during protein synthesis: protein activity (as a proxy of gene expression, and as measured in experiments using artificial variants of 5' leading sequences of beta galactosidase in Escherichia coli) increases proportionally to the number of stop motifs in any frame in the 5' leading region. This suggests that stop codons in the 5' leading region, upstream of the recognized coding sequence, terminate eventual translations that sometimes start before ribosomes reach the mRNA's recognized start codon, increasing efficiency. This hypothesis is confirmed by further analyses: mRNAs with 5' leading regions containing in the same frame a start preceding a stop codon (in any frame) produce less enzymatic activity than those with the stop preceding the start. Hence coding properties, in addition to other properties, such as the secondary structure of the 5' leading region, regulate translation. This experimentally (a) confirms that within coding regions, off frame stops increase protein synthesis efficiency by early stopping frameshifted translation; (b) suggests that this occurs for all frames also in 5' leading regions and that (c) several alternative start codons that function at different probabilities should routinely be considered for all genes in the region of the recognized initiation codon. An unknown number of short peptides might be translated from coding and non-coding regions of RNAs.  相似文献   

9.
The MADS box organ identity gene AGAMOUS (AG) controls several steps during Arabidopsis thaliana flower development. AG cDNA contains an open reading frame that lacks an ATG triplet to function as the translation initiation codon, and the actual amino terminus of the AG protein remains uncharacterized. We have considered the possibility that AG translation can be initiated at a non-AUG codon. Two possible non-AUG initiation codons, CUG and ACG, are present in the 5' region of AG mRNA preceding the highly conserved MADS box sequence. We prepared a series of AG genomic constructs in which these codons are mutated and assayed their activity in phenotypic rescue experiments by introducing them as transgenes into ag mutant plants. Alteration of the CTG codon to render it unsuitable for acting as a translation initiation site does not affect complementation of the ag-3 mutation in transgenic plants. However, a similar mutation of the downstream ACG codon prevents the rescue of the ag-3 mutant phenotype. Conversely, if an ATG is introduced immediately 5' to the disrupted ACG codon, the resulting construct fully complements the ag-3 mutation. The AG protein synthesized in vitro by initiating translation at the ACG position is active in DNA binding and is of the same size as the AG protein detected from floral tissues, whereas AG polypeptides with additional amino-terminal residues do not appear to bind DNA. These results indicate that translation of AG is initiated exclusively at an ACG codon and prove that non-AUG triplets may be efficiently used as the sole translation initiation site in some plant cellular mRNAs.  相似文献   

10.
MHC class I molecules present a comprehensive mixture of peptides on the cell surface for immune surveillance. The peptides represent the intracellular protein milieu produced by translation of endogenous mRNAs. Unexpectedly, the peptides are encoded not only in conventional AUG initiated translational reading frames but also in alternative cryptic reading frames. Here, we analyzed how ribosomes recognize and use cryptic initiation codons in the mRNA. We find that translation initiation complexes assemble at non-AUG codons but differ from canonical AUG initiation in response to specific inhibitors acting within the peptidyl transferase and decoding centers of the ribosome. Thus, cryptic translation at non-AUG start codons can utilize a distinct initiation mechanism which could be differentially regulated to provide peptides for immune surveillance.  相似文献   

11.
12.
We determined the in vivo translational efficiency of 'unleadered' lacZ compared with a conventionally leadered lacZ with and without a Shine–Dalgarno (SD) sequence in Escherichia coli and found that changing the SD sequence of leadered lacZ from the consensus 5'-AGGA-3' to 5'-UUUU-3' results in a 15-fold reduction in translational efficiency; however, removing the leader altogether results in only a twofold reduction. An increase in translation coincident with the removal of the leader lacking a SD sequence suggests the existence of stronger or novel translational signals within the coding sequence in the absence of the leader. We examined, therefore, a change in the translational signals provided by altering the AUG initiation codon to other naturally occurring initiation codons (GUG, UUG, CUG) in the presence and absence of a leader and find that mRNAs lacking leader sequences are dependent upon an AUG initiation codon, whereas leadered mRNAs are not. This suggests that mRNAs lacking leader sequences are either more dependent on perfect codon–anticodon complementarity or require an AUG initiation codon in a sequence-specific manner to form productive initiation complexes. A mutant initiator tRNA with compensating anticodon mutations restored expression of leadered, but not unleadered, mRNAs with UAG start codons, indicating that codon–anticodon complementarity was insufficient for the translation of mRNA lacking leader sequences. These data suggest that a cognate AUG initiation codon specifically serves as a stronger and different translational signal in the absence of an untranslated leader.  相似文献   

13.
Potential secondary structure at translation-initiation sites.   总被引:22,自引:4,他引:18       下载免费PDF全文
Since translational start codons also occur internally, more-complex features within mRNA must determine initiation. We compare the potential secondary structure of 123 prokaryotic mRNA start regions to that of regions coding for internal methionines. The latter display an unexpectedly-uniform, almost-periodic pattern of pairing potential. In contrast, sequences 5' to start codons have little self-pairing, and do not pair extensively with the proximal coding region. Pairing potential surrounding start codons was found to be less than half of that found near internal AUGs. In groups of random sequences where the distribution of nucleotides at each position, or of trinucleotides at each in-frame codon position, matched the observed natural distribution, there was no periodicity in the pairing potential of the internal sequences. Randomized internal sequences had less pairing: the ratio of pairing intensity between internals and starts was reduced from 2.0 to 1.6 by randomization. We propose that the transition from the relatively-unstructured start domains to the highly-structured internal sequences may be an important determinant of translational start-site recognition.  相似文献   

14.
15.
Pushing the limits of the scanning mechanism for initiation of translation   总被引:61,自引:0,他引:61  
Kozak M 《Gene》2002,299(1-2):1-34
  相似文献   

16.
Wheat germ extract (WGE) is one of the most widely used eukaryotic cell-free translation systems for easy synthesis of a broad range of proteins merely by adding template mRNAs. Its productivity has thus far been improved by removing translational inhibitors from the extract and stabilizing the template with terminal protectors. Nonetheless, there remains room for increasing the yield by designing a terminally protected template with higher susceptibility to translation. Given the fact that a 5′ terminal protector is a strong inhibitor of the canonical translation, we herein focused on Cripavirus internal ribosome entry sites (IRESes), which allow for a unique translation initiation from a non-AUG start codon without the help of any initiation factors. We mutated their start codons to enhance the IRES-mediated translation efficiency in WGE. One of the mutants showed considerably higher efficiency, 3–4-fold higher than that of its wild type, and also 3–4-fold higher than the canonical translation efficiency by an IRES-free mRNA having one of the most effective canonical-translation enhancers. Because this mutated IRES is compatible with different types of genes and terminal protectors, we expect it will be widely used to synthesize proteins in WGE.  相似文献   

17.
The question of whether hepatitis C virus (HCV) RNA is translated by a mechanism of internal ribosome entry has been examined by testing whether insertion of HCV sequences between the two cistrons of a dicistronic mRNA promotes translation of the downstream cistron in rabbit reticulocyte lysates. Deletion analysis showed that efficient internal initiation required a segment of the HCV genome extending from about nucleotides 40-370 and that deletions from the 3'-end of this element were highly deleterious. As the authentic initiation codon for HCV polyprotein synthesis is at nucleotide 342, this demonstrates that, besides 5'-UTR sequences, a short length of HCV coding sequences is required for internal initiation. This finding was confirmed in transfection assays of BT7-H cells and was shown to be independent of the nature of the downstream reporter cistron. The strong requirement for coding sequences is in sharp contrast to internal initiation of picornavirus RNA translation. As a probable correlate with this, it was also found that the efficiency of internal initiation was only marginally compromised when the authentic initiation codon was mutated to a non-AUG codon, again in sharp contrast with the picornaviruses. The finding that coding sequences are required for internal initiation has important implications for the design of experiments to test for internal initiation of translation of cellular mRNAs.  相似文献   

18.
During initiation, the ribosome is tasked to efficiently recognize open reading frames (ORFs) for accurate and fast translation of mRNAs. A critical step is start codon recognition, which is modulated by initiation factors, mRNA structure, a Shine Dalgarno (SD) sequence and the start codon itself. Within the Escherichia coli genome, we identified more than 50 annotated initiation sites harboring AUGUG or GUGUG sequence motifs that provide two canonical start codons, AUG and GUG, in immediate proximity. As these sites may challenge start codon recognition, we studied if and how the ribosome is accurately guided to the designated ORF, with a special focus on the SD sequence as well as adenine at the fourth coding sequence position (A4). By in vitro and in vivo experiments, we characterized key requirements for unambiguous start codon recognition, but also discovered initiation sites that lead to the translation of both overlapping reading frames. Our findings corroborate the existence of an ambiguous translation initiation mechanism, implicating a multitude of so far unrecognized ORFs and translation products in bacteria.  相似文献   

19.
Many of the chloroplast mRNAs possess Shine-Dalgarno (SD)-like sequences (typically GGAGG) in the 5'-untranslated regions, but the position is highly variable. Using a homologous in vitro translation system, we assessed the role for translation of SD-like sequences in four tobacco chloroplast mRNAs. The rbcL mRNA has a typical SD-like sequence at a position similar to the conserved position (-12 to -4 with respect to the start codon) observed in E. coli, and this sequence was found to be essential for translation. This was also the case for the atpE mRNA. However, SD-like sequences in the rps12 mRNA and in the petB mRNA is located far from (-44 to -42) and too close to (-5 to -2) the initiation codon, respectively, and these sequences were not essential for translation. These results indicate that functional SD-like sequences are located around 10 nucleotides upstream from the translational start codon. Competition assays confirmed that a functional SD-like sequence interacts with the 3' terminus of chloroplast 16S rRNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号