首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was undertaken to test the hypothesis that the contraction mode of action [static-isometric (Iso), shortening-concentric (Con), or lengthening-eccentric (Ecc)] used to stress the muscle provides a differential mechanical stimulus eliciting greater or lesser degrees of anabolic response at the initiation of a resistance training program. We performed an acute resistance training study in which different groups of rodents completed four training sessions in either the Iso, Con, or Ecc mode of contraction under conditions of activation and movement specifically designed to elicit equivalent volumes of force accumulation. The results of this experiment indicate that the three modes of contraction produced nearly identical cell signaling, indicative of an anabolic response involving factors such as increased levels of mRNA for IGF-I, procollagen III alpha1, decreased myostatin mRNA, and increased total RNA concentration. The resulting profiles collectively provide evidence that pure mode of muscle action, in and of itself, does not appear to be a primary variable in determining the efficacy of increased loading paradigms with regard to the initiation of selected muscle anabolic responses.  相似文献   

2.
3.
Communication among scientists must be clear and concise to avoid ambiguity and misinterpretations. The selection of words must be based on accepted definitions. The fields of biomechanics, muscle physiology, and exercise science have had a particularly difficult time with terminology, arising from the complexity of muscle contractions and by the use of inappropriate terminology by scientists. The dictionary definition of the verb "contract," specifically for the case of muscle, is "to undergo an increase in tension, or force, and become shorter." Under all circumstances, an activated muscle generates force, but an activated muscle generating force does not invariably shorten! During the 1920s and 1930s, investigators recognized that the interaction between the force generated by the muscle and the load on the muscle results in either shortening, no length change (isometric), or lengthening of the muscle. The recognition that muscles perform three different types of "contractions" required that contraction be redefined as "to undergo activation and generate force." Modifiers of contraction are then needed to clarify the lack of movement or the directionality of movement. Despite the contradiction, for 75 years the lack of movement has been termed an "isometric contraction." The directionality of the movement is then best described by the adjectives "shortening" and "lengthening." The definitions of "concentric" as "having the same center" and of "eccentric" as "not having the same center" are consistent with hypertrophy, or remodeling of the heart muscle, but are inappropriate to describe the contractions of skeletal muscles.  相似文献   

4.
Female beagle dogs were treadmill trained 40 km/day at 5.5-6.8 km/h, 15% upgrade, 5 days/wk for 55 wk. With training, hepatic and red gastrocnemius (RG) total glutathione increased, glutathione peroxidase (GPX) and glutathione reductase (GRD) increased in all the leg muscles studied, and hepatic glutathione S-transferase (GST) activity increased. Joint immobilization (11 wk) did not affect GPX, GRD, and GST of RG, but total glutathione decreased. Male Han Wistar rats were treadmill trained 2 h/day at 2.1 km/h, 5 days/wk for 8 wk. With training, hepatic total glutathione and leg muscle GPX increased but GRD of RG decreased, perhaps because of an increased muscle flavo-protein breakdown during exhaustive training. gamma-Glutamyl transpeptidase was higher in the trained leg muscles. Exhaustive exercise decreased muscle gamma-glutamyl transpeptidase of only control leg muscle, depleted muscle (lesser extent in trained rats) and liver total glutathione of both groups, decreased GRD only in untrained RG, and increased hepatic GST. Endurance training elevated the antioxidant and detoxicant status of muscle and liver, respectively.  相似文献   

5.
The central nervous system employs different strategies to execute specific motor tasks. Because afferent feedback during shortening and lengthening muscle contractions differs, the neural strategy underlying these tasks may be quite distinct. Cortical drive may be adjusted or afferent input regulated. The exact mechanisms are not clear. Here, we examine the control of synaptic transmission across the Ia synapse during shortening and lengthening muscle contractions. Subjects were instructed to maintain isolated activity in a single tibialis anterior (TA) motor unit while muscle length was varied from flexion to extension and back. At a fixed interval after a firing of the active motor unit, a single electrical stimulus was applied to the common peroneal nerve to activate Ia afferents from the TA muscle. We investigated the stimulus-induced change in firing probability of 19 individual low-threshold TA motor units during shortening and lengthening contractions. Any change in firing probability depends on both pre- and postsynaptic mechanisms. In this experiment, motoneuron firing rate was similar during both contraction types. There was no difference in the firing probability between shortening and lengthening contractions (0.23 +/- 0.03 and 0.20 +/- 0.02, respectively). We suggest that there is no contraction type-specific control of Ia input to the motoneurons during shortening and lengthening muscle contractions. Cortical adjustments may have occurred.  相似文献   

6.
The onset of whole muscle hypertrophy in response to overloading is poorly documented. The purpose of this study was to assess the early changes in muscle size and architecture during a 35-day high-intensity resistance training (RT) program. Seven young healthy volunteers performed bilateral leg extension three times per week on a gravity-independent flywheel ergometer. Cross-sectional area (CSA) in the central (C) and distal (D) regions of the quadriceps femoris (QF), muscle architecture, maximal voluntary contraction (MVC), and electromyographic (EMG) activity were measured before and after 10, 20, and 35 days of RT. By the end of the training period, MVC and EMG activity increased by 38.9 +/- 5.7 and 34.8% +/- 4.7%, respectively. Significant increase in QF CSA (3.5 and 5.2% in the C and D regions, respectively) was observed after 20 days of training, along with a 2.4 +/- 0.7% increase in fascicle length from the 10th day of training. By the end of the 35-day training period, the total increase in QF CSA for regions C and D was 6.5 +/- 1.1 and 7.4 +/- 0.8%, respectively, and fascicle length and pennation angle increased by 9.9 +/- 1.2 and 7.7 +/- 1.3%, respectively. The results show for the first time that changes in muscle size are detectable after only 3 wk of RT and that remodeling of muscle architecture precedes gains in muscle CSA. Muscle hypertrophy seems to contribute to strength gains earlier than previously reported; flywheel training seems particularly effective for inducing these early structural adaptations.  相似文献   

7.
The purpose of this study was to examine the effect of exercise-induced damage of the elbow flexor muscles on steady motor performance during isometric, shortening, and lengthening contractions. Ten healthy individuals (age 22+/-4 yr) performed four tasks with the elbow flexor muscles: a maximum voluntary contraction, a one repetition maximum (1 RM), an isometric task at three joint angles (short, intermediate, and long muscle lengths), and a constant-load task during slow (approximately 7 degrees/s) shortening and lengthening contractions. Task performance was quantified as the fluctuations in wrist acceleration (steadiness), and electromyography was obtained from the biceps and triceps brachii muscles at loads of 10, 20, and 40% of 1 RM. Tasks were performed before, immediately after, and 24 h after eccentric exercise that resulted in indicators of muscle damage. Maximum voluntary contraction force and 1-RM load declined by approximately 45% immediately after exercise and remained lower at 24 h ( approximately 30% decrease). Eccentric exercise resulted in reduced steadiness and increased biceps and triceps brachii electromyography for all tasks. For the isometric task, steadiness was impaired at the short compared with the long muscle length immediately after exercise (P<0.01). Furthermore, despite no differences before exercise, there was reduced steadiness for the shortening compared with the lengthening contractions after exercise (P=0.01), and steadiness remained impaired for shortening contractions 24 h later (P=0.01). These findings suggest that there are profound effects for the performance of these types of fine motor tasks when recovering from a bout of eccentric exercise.  相似文献   

8.
Stretch reflexes were evoked in elbow flexor muscles undergoing three different muscle contractions, i.e. isotonic shortening (SHO) and lengthening (LEN), and isometric (ISO) contractions. The intermuscle relationships for the magnitude of the stretch reflex component in the eletromyographic (EMG) activities of two main elbow flexor muscles, i.e. the biceps brachii (BB) and the brachioradialis (BRD), were compared among the three types of contractions. The subjects were requested to move their forearms sinusoidally (0.1 Hz) against a constant pre-load between elbow joint angles of 10° (0° = full extension) and 80° during SHO and LEN, and to keep an angle of 45° during the ISO. The perturbations were applied at the elbow angle of 45° in pseudo-random order. The EMG signals were rectified and averaged over a period of 100 ms before and 400 ms after the onset of the perturbation 40–50 times. From the ensemble averaged EMG waveform, the background activity (BGA), short (20–50 ms) and long latency (M2, 50–80, M3, 80–100 ms) reflex and voluntary activity (100–150 ms) components were measured. The results showed that both BGA and reflex EMG activity of the two elbow flexor muscles were markedly decreased during the lengthening contraction compared to the SHO and ISO contractions. Furthermore, the changes of reflex EMG components in the BRD muscle were more pronounced than those in the BB muscle, i.e. the ratios of M2 and M3 magnitudes between BRD and BB (BRD:BB) were significantly reduced during the LEN contractions. These results would suggest that the gain of long latency stretch reflex EMG activities in synergistic muscles might be modulated independently according to the model of muscle contraction. Accepted: 1 September 1997  相似文献   

9.
The aim of the present study was to investigate the behavior of human muscle fascicles during dynamic contractions. Eight subjects performed maximal isometric dorsiflexion contractions at six ankle joint angles and maximal isokinetic concentric and eccentric contractions at five angular velocities. Tibialis anterior muscle architecture was measured in vivo by use of B-mode ultrasonography. During maximal isometric contraction, fascicle length was shorter and pennation angle larger compared with values at rest (P < 0.01). During isokinetic concentric contractions from 0 to 4.36 rad/s, fascicle length measured at a constant ankle joint angle increased curvilinearly from 49.5 to 69.7 mm (41%; P < 0.01), whereas pennation angle decreased curvilinearly from 14.8 to 9.8 degrees (34%; P < 0.01). During eccentric muscle actions, fascicles contracted quasi-isometrically, independent of angular velocity. The behavior of muscle fascicles during shortening contractions was believed to reflect the degree of stretch applied to the series elastic component, which decreases with increasing contraction velocity. The quasi-isometric behavior of fascicles during eccentric muscle actions suggests that the series elastic component acts as a mechanical buffer during active lengthening.  相似文献   

10.
Studies of whole limb blood flow have shown that static handgrip elicits a vasodilatation in the resting forearm and vasoconstriction in the resting leg. We asked if these responses occur in the skeletal muscle vascular bed, and if so, what is the relative contribution of local metabolic versus other mechanisms to these vascular responses. Blood flow recordings were made simultaneously in the skeletal muscle of the resting arm and leg using the Xenon-washout method in ten subjects during 3 min of isometric handgrip at 30% of maximal voluntary contraction. In the arm, skeletal muscle vascular resistance (SMVR) decreased transiently at the onset of exercise followed by a return to baseline levels at the end of exercise. In the leg SMVR remained unchanged during the 1st min of handgrip, but had increased to exceed baseline levels by the end of exercise. During exercise electromyography (EMG) recordings from nonexercising limbs demonstrated a progressive 20-fold increase in activity in the arm, but remained at baseline in the leg. During EMG-signal modelled exercise performed to mimic the inadvertent muscle activity, decreases in forearm SMVR amounted to 57% of the decrease seen with controlateral handgrip. The present study would seem to indicate that vascular tone in nonexercising skeletal muscle in the arm and leg are controlled differently during the early stages of static handgrip. Metabolic vasodilatation due to involuntary contraction could significantly modulate forearm skeletal muscle vascular responses, but other factors, most likely neural vasodilator mechanisms, must make major contributions. During the later stages of contralateral sustained handgrip, vascular adjustments in resting forearm skeletal muscle would seem to be the final result of reflex sympathetic vasoconstrictor drive, local metabolic vasodilator forces and possibly neurogenic vasodilator mechanisms.  相似文献   

11.
The dependence of the isometric tension, the velocity of unloaded shortening, and the steady-state rate of MgATP hydrolysis on the MgATP concentration (range 0.01-5 mM MgATP) was studied in Ca-activated skinned Limulus muscle fibers. With increasing MgATP concentration the isometric tension increased to a peak at approximately 0.1 mM, and slightly decreased in the range up to 5 mM MgATP. The velocity of unloaded shortening depended on the MgATP concentration roughly according to the Michaelis-Menten law of saturation kinetics with a Michaelis-Menten constant Kv = 95 microM and a maximum shortening velocity of 0.07 muscle lengths s-1; the detachment rate of the cross-bridges during unloaded shortening was 24 s-1. The rate of MgATP splitting also depended hyperbolically on the MgATP concentration with a Michaelis-Menten constant Ka = 129 microM and a maximum turnover frequency of 0.5-1 s-1. The results are discussed in terms of a cross-bridge model based on a biochemical scheme of ATP hydrolysis by actin and myosin in solution.  相似文献   

12.
Muscle hypertrophy response to resistance training in older women.   总被引:7,自引:0,他引:7  
We conducted a 12-wk resistance training program in elderly women [mean age 69 +/- 1.0 (SE) yr] to determine whether increases in muscle strength are associated with changes in cross-sectional fiber area of the vastus lateralis muscle. Twenty-seven healthy women were randomly assigned to either a control or exercise group. The program was satisfactorily completed and adequate biopsy material obtained from 6 controls and 13 exercisers. After initial testing of baseline maximal strength, exercisers began a training regimen consisting of seven exercises that stressed primary muscle groups of the lower extremities. No active intervention was prescribed for the controls. Increases in muscle strength of the exercising subjects were significant compared with baseline values (28-115%) in all muscle groups. No significant strength changes were observed in the controls. Cross-sectional area of type II muscle fibers significantly increased in the exercisers (20.1 +/- 6.8%, P = 0.02) compared with baseline. In contrast, no significant change in type II fiber area was observed in the controls. No significant changes in type I fiber area were found in either group. We conclude that a program of resistance exercise can be safely carried out by elderly women, such a program significantly increases muscle strength, and such gains are due, at least in part, to muscle hypertrophy.  相似文献   

13.
The metabolic and morphologic adaptation to physical training in skeletal muscle tissue of eleven middle-aged, physically untrained men was studied. Muscle biopsies were taken from the vastus lateralis before, after 8 weeks and after 6 months of physical training for analysis of metabolic and morphologic variables. Glucose tolerance test indicated increased insulin sensitivity after 6 months of physical training. The activities of glycogen phosphorylase, hexokinase and glucose-6-P-dehydrogenase were increased but other enzymes involved in glycogen turnover and glycolysis were unchanged after 6 months of physical traning. The activities of citrate synthase and cytochrome-c-oxidase, representing the oxidative capacity were significantly increased already after 8 weeks of physical training. The incorporation rate of palmitate-carbon into CO2 and triglycerides increased, and the incorporation rate of leucine-carbon into CO2 decreased with 6 months of physical training. The fiber diameter of both Type 1- and Type 2-fibers increased, while the mitochondrial volume increased predominantly in Type 2-fibers. Significant correlations were found between metabolic, physiologic and morphologic variables before and after physical training. The results indicate an increased oxidative capacity, mainly located to Type 2-fibers, and an increased utilization of fatty acids in response to this type of physical training.  相似文献   

14.
Despite numerous reports on isometric force depression, few reports have quantified force depression during active muscle shortening (dynamic force depression). The purpose of this investigation was to determine the influence of shortening history on isometric force following active shortening, force during isokinetic shortening, and velocity during isotonic shortening. The soleus muscles of four cats were subjected to a series of isokinetic contractions at three shortening velocities and isotonic contractions under three loads. Muscle excursions initiated from three different muscle lengths but terminated at a constant length. Isometric force produced subsequent to active shortening, and force or shortening velocity produced at a specific muscle length during shortening, were compared across all three conditions. Results indicated that shortening history altered isometric force by up to 5%, force during isokinetic shortening up to 30% and shortening velocity during isotonic contractions by up to 63%. Furthermore, there was a load by excursion interaction during isotonic contractions such that excursion had the most influence on shortening velocity when the loads were the greatest. There was not a velocity by excursion interaction during isokinetic contractions. Isokinetic and isotonic power–velocity relationships displayed a downward shift in power as excursions increased. Thus, to discuss force depression based on differences in isometric force subsequent to active shortening may underestimate its importance during dynamic contractions. The presence of dynamic force depression should be realized in sport performance, motor control modeling and when controlling paralyzed limbs through artificial stimulation.  相似文献   

15.
Force output and fatigue and recovery patterns were studied during intermittent short-term exercise. 27 men performed three bouts of 30 maximal unilateral knee extensions on 2 different occasions. Blood flow was maintained or occluded during recovery periods (60 s). Blood flow was restricted by inflating a pneumatic cuff placed around the proximal thigh. Muscle biopsies from vastus lateralis were analyzed for identification of fast twitch (FT) and slow twitch (ST) fibers and relative FT area. Peak torque decreased during each bout of exercise and more when blood flow was restricted during recovery. Initial peak torque (IPT) and average peak torque (APT) decreased over the three exercise bouts. This response was 3 fold greater without than with blood flow during recovery. IPT and APT decreased more in individuals with mainly FT fibers than in those with mainly ST fibers. It is suggested that performance during repeated bouts of maximal concentric contractions differs between individuals with different fiber type composition. Specifically, in high intensity, intermittent exercise with emphasis on anaerobic energy release a high FT composition may not necessarily be advantageous for performance.  相似文献   

16.
17.
18.
Skeletal muscle atrophy is evident after muscle disuse, unloading, or spaceflight and results from decreased protein content as a consequence of decreased protein synthesis, increased protein breakdown or both. At this time, there are essentially no human data describing proteolysis in skeletal muscle undergoing atrophy on Earth or in space, primarily due to lack of valid and accurate methodology. This particular study aimed at assessing the effects of short-term unloading on the muscle contractile proteolysis rate. Eight men were subjected to 72-h unilateral lower limb suspension (ULLS) and intramuscular interstitial levels of the naturally occurring proteolytic tracer 3-methylhistidine (3MH) were measured by means of microdialysis before and on completion of this intervention. The 3MH concentration following 72-h ULLS (2.01 +/- 0.22 nmol/ml) was 44% higher (P < 0.05) than before ULLS (1.56 +/- 0.20 nmol/ml). The present experimental model and the employed method determining 3MH in microdialysates present a promising tool for monitoring skeletal muscle proteolysis or metabolism of specific muscles during conditions resulting in atrophy caused by, e.g., disuse and real or simulated microgravity. This study provides evidence that the atrophic processes are evoked rapidly and within 72 h of unloading and suggests that countermeasures should be employed in the early stages of space missions to offset or prevent muscle loss during the period when the rate of muscle atrophy is the highest.  相似文献   

19.
In five healthy males sustained isometric torques during elbow flexion, knee extension, and plantar flexion correlated positively with intramuscular tissue pressure (MTP) in the range 0-80% of the maximal voluntary contraction (MVC). During passive compression of the muscle at rest 133-Xenon muscle clearance stopped when MTP reached diastolic arterial pressure (DAP) indicating that the muscle vascular bed was occluded. However, during sustained contraction this relation between DAP, flow and MTP was not seen. In two cases 133-Xenon clearance from M. soleus did not stop in spite of an 80% maximal contraction and MTP stayed below DAP. In other cases MTP would reach as high as 240 mm Hg before clearance was zero. In the deeper parts of the muscles MTP during contraction was increased in relation to the more superficial parts. The means values for the % MVC that would stop MBF varied between 50 and 64% MVC for the investigated muscles. Mean rectified EMG (MEMG) showed a high correlation to MTP during sustained exhaustive contractions: When MEMG was kept constant MTP also remained constant while the exerted force decreased; when force was kept constant both MEMG and MTP increased in parallel. This demonstrated that muscle tissue compliance is decreasing during fatigue. Muscle ischemia occurring during sustained isometric contractions is partly due to the developed MTP, where especially the MTP around the veins in the deeper parts of the muscle can be considered of importance. However, ischemia is also affected by muscle fiber texture and anatomical distorsion of tissues.  相似文献   

20.
Yagi N  Iwamoto H  Inoue K 《Biophysical journal》2006,91(11):4110-4120
Structural changes in the myosin cross-bridges were studied by small-angle x-ray diffraction at a time resolution of 0.53 ms. A frog sartorius muscle, which was electrically stimulated to induce isometric contraction, was released by approximately 1% in 1 ms, and then its length was decreased to allow steady shortening with tension of approximately 30% of the isometric level. Intensity of all reflections reached a constant level in 5-8 ms. Intensity of the 7.2-nm meridional reflection and the (1,0) sampling spot of the 14.5-nm layer line increased after the initial release but returned to the isometric level during steady shortening. The 21.5-nm meridional reflection showed fast and slow components of intensity increase. The intensity of the 10.3-nm layer line, which arises from myosin heads attached to actin, decreased to a steady level in 2 ms, whereas other reflections took longer, 5-20 ms. The results show that myosin heads adapt quickly to an altered level of tension, and that there is a distinct structural state just after a quick release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号