首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The Mediterranean corn borer or pink stem borer (MCB, Sesamia nonagrioides Lefebvre) causes important yield losses as a consequence of stalk tunneling and direct kernel damage. B73 and Mo17 are the source of the most commercial valuable maize inbred lines in temperate zones, while the intermated B73 × Mo17 (IBM) population is an invaluable source for QTL identification. However, no or few experiments have been carried out to detect QTL for corn borer resistance in the B73 × Mo17 population. The objective of this work was to locate QTL for resistance to stem tunneling and kernel damage by MCB in the IBM population. We detected a QTL for kernel damage at bin 8.05, although the effect was small and two QTL for stalk tunneling at bins 1.06 and 9.04 in which the additive effects were 4 cm, approximately. The two QTL detected for MCB resistance were close to other QTL consistently found for European corn borer (ECB, Ostrinia nubilalis Hübner) resistance, indicating mechanisms of resistance common to both pests or gene clusters controlling resistance to different plagues. The precise mapping achieved with the IBM population will facilitate the QTL pyramiding and the positional cloning of the detected QTL.  相似文献   

2.
Maize plants were grown under four moisture regimes (wet to extreme deficit) and three constant temperatures (20°, 25° & 30°C) in a phytotron. Each plant was infested with one E-race European corn borer [Ostrinia nubilalis (Hubn.)] (ECB) egg mass at pollen shed. ECB development, location, and establishment were recorded over the course of 12 destructive sample dates (4/temperature). ECB developmental rates were not significantly affected by soil moisture treatments, but were significantly affected by temperature. In spite of successful establishment of four distinctly different soil moisture regimes, the maize stalk tissue water levels were not significantly different among soil water treatments. Instead, the maize plants exhibited accelerated leaf senescence in response to the water deficit conditions. Among the soil water treatments, differences were found in larval establishment, vertical distribution and dispersion, and feeding site selection; however, those effects were slight and could not explain the similarity in ECB developmental rates observed in these treatments.In maize, the larval environment within the stalk was effectively insulated from changes in the external environment by the plant's ability to maintain a relatively high and stable stalk tissue water content. Thus, large changes to the soil environment had essentially no effect on ECB development, though drastic consequences for the plant. This study indicates that ECB rates of development are relatively insensitive to changes in the soil water environment as well as the associated changes in the maize plant that accompany severe drought stress. The significance of these findings to insect modelling, crop physiology, and insect-crop interactions is discussed.
Résumé Des plants de maïs se développent dans un phytotron dans 4 conditions d'humidité du sol (de la saturation à la dessication) et à 3 températures constantes (20°, 25° & 30°C). Chaque pied est contaminé au moment de l'émission du pollen, par une ooplaque d'O. nubilalis Hübn. (ECB) de race européenne E. L'installation, la colonisation et le développement des chenilles sont notés lors de 12 périodes de prélèvements destructifs (4 par température). La vitesse de développement d'O. nubilalis est affectée par la température, main non par l'humidité du sol. Les 4 niveaux d'humidité du sol n'ont aucun effet sur la teneur en eau des tiges de maïs. En fait, les feuilles de maïs présentent une senescence précoce lorsqu'il y a déficit en eau dans le sol. La teneur en eau du sol agit sur l'installation, sur la distribution verticale, la dispersion et le lieu d'alimentation des chenilles; mais ces effets sont légers et ne modifient pas la vitesse de développement.L'environnement larvaire dans la tige de maïs est efficacement isolé des variations externes par l'aptitude de la plante à maintenir la teneur en eau des tiges relativement élevée et stable. Ainsi, des changements importants au niveau du sol n'ont pratiquement pas d'effets sur le développement d'O. nubilalis, malgré les conséquences brutales pour la plante. Cette étude montre que la vitesse de développement d'O. nubilalis est relativement insensible aux modifications de la teneur en eau du sol ainsi qu'aux effets de ce stress de sécheresse sévère sur le pied de maïs. La discussion porte sur l'importance de ces résultats pour la modélisation de la dynamique de l'insecte, la physiologie de la culture et les interactions entre insecte et plante.
  相似文献   

3.
Quantitative trait loci (QTLs) for resistance to the fungal pathogen Setosphaeria turcica, the cause of northern corn leaf blight (NCLB), were mapped in a population of 220 F3 families derived from a cross between two moderately resistant European inbred lines, D32 (dent) and D145 (flint). The population was genotyped with 87 RFLP and 7 SSR markers. Trials were conducted in the field in Switzerland, and in the greenhouse with selected F3 families in Germany. The F3 population segregated widely for resistance with transgression of the parents. By composite interval mapping, a total of 13 QTLs were detected with two disease ratings (0 and 3 weeks after flowering). Together these QTLs explained 48% and 62% of the phenotypic variation. Gene action at most QTLs was partially dominant. Eight out of the 13 QTL alleles for resistance were contributed by the more-resistant parent, D145. On chromosomes 3, 5 and 8, QTLs were located in the same chromosomal regions as QTLs in tropical and U.S. Corn Belt germplasm. Some QTLs affected NCLB, head smut and common rust at the same time, with alleles at these loci acting isodirectionally. Received: 25 January 1999 / Accepted: 20 Februar 1999  相似文献   

4.
Divergent adaptation to host plant species may be the major mechanism driving speciation and adaptive radiations in phytophagous insects. Host plants can differ intrinsically in a number of attributes, but the role of natural enemies in host plant specialization is often underappreciated. Here, we report behavioural divergence between the European corn borer (ECB, Ostrinia nubilalis) and its sibling species Ostrinia scapulalis, in relation to a major enemy: humans. Harvesting maize imposes selective mortality on Ostrinia larvae: those located above the cut-off line of the stalk face almost certain death. We show that ECB larvae diapause closer to the ground than those of O. scapulalis, which is sympatric but feeds mainly on weeds. The difference in diapause height results from genetically determined differences in geotactic behaviour. ECB larvae descend towards the ground specifically at harvest time, increasing their chances of surviving harvesting by about 50 per cent over O. scapulalis larvae. Natural enemies appear as a major driver of host-plant specialization in this example, stressing the need to consider ‘tri-trophic’ ecological niches to understand insect diversification. Our results also strongly suggest that geotaxis evolved as a singular instance of behavioural resistance in a major agricultural pest.  相似文献   

5.
The effects of intermating on recombination and the development of linkage maps were assessed in maize. Progeny derived from a common population (B73 × Mo17) before and after five generations of intermating were genotyped at the same set of 190 RFLP loci. Intermating resulted in nearly a four-fold increase in the genetic map distance and increased the potential for improved genetic resolution in 91% of the intervals evaluated. This mapping population and related information should connect research involving dense genetic maps, physical mapping, gene isolation, comparative genomics, analysis of quantitative trait loci and investigations of heterosis.  相似文献   

6.
7.
Contents of three 1,4-benzoxazin-3-ones in tissue samples from different parts (young leaf, second leaf, old leaf, stem and root) of young maize plants of 4-leaves stage, fed by the third instar larvae of the Asian corn borer, Ostrinia furnacalis (Guenée), were analyzed by high-performance liquid chromatography-mass spectroscopy (HPLC-MS). Samples were taken immediately (set A) or 48 h (set B) after larvae had fed on the second leaf for 48 h. The three 1,4-benzoxazin-3-ones investigated in our experiments were 2,4-dihydroxy-7-methoxy-1,4(2H)-benzoxazin-3-one (DIMBOA), 2,4-dihydroxy-1,4(2H)-benzoxazin-3-one (DIBOA) and 2-hydroxy-7-methoxy-1,4(2H)-benzoxazin-3-one (HMBOA). In samples of set A, the levels of DIMBOA and HMBOA were significantly lifted in the old leaf (L3) and young leaf (L1), respectively, while amounts of these two chemicals in other plant parts were not significantly different between larvae-fed plants and intact plants. Concentrations of DIBOA in each plant part remained unchanged. In samples of set B, no concentration differences for any of these three 1,4-benzoxazin-3-ones between larvae-fed plants and controls were observed in any plant part. The feeding of the Asian corn borer seems to have limited effects on induction of these three 1,4-benzoxazin-3-ones in young maize plants of the variety investigated.  相似文献   

8.
Ultrastructural examination of diapause and nondiapause larval brains of the European corn borer disclosed anatomical differences that may be related to the insect's "blood-barrier". The perineurial type I cells are quite closely appressed in the diapause brain, but thrown into extensive folds with large intercellular spaces in the nondiapause brain. The perineurial type II cells of diapause and nondiapause larvae are basically similar in general ultrastructure, and most likely form the basis for the "blood-brain barrier." Horseradish peroxidase penetration studies indicated that the outer margin of the perineurial type II cells constitute the limits of infiltration into the brain. An enzymatic component of the "blood-brain barrier" is postulated in this insect. The localization of ATPase in the perineurial type II cells indicates that energy-requiring regulatory mechanisms may be localized here. Metabolic studies with isolated brains, coupled with recent evidence from mammalian systems, suggest that glial cells may be of importance in an enzymatic "blood-brain barrier."  相似文献   

9.
It has been claimed that the system that delivers the products of plant breeding reduces the diversity of cultivated varieties leading to an increased genetic vulnerability. The main goal of our study was to monitor the temporal trends in genetic diversity over the past five decades among maize cultivars with the largest acreage in Central Europe. Our objectives were to (1) investigate how much of the genetic diversity present in important adapted open-pollinated varieties (OPVs) has been captured in the elite flint germplasm pool, (2) examine changes in the genetic diversity among the most important commercial hybrids as well as in their dent and flint parents, (3) analyze temporal changes in allele frequencies between the dent and flint parental inbreds, and (4) investigate linkage disequilibrium (LD) trends between pairs of loci within the set of parental dent and flint lines. We examined 30 individuals of five prominent OPVs from Central Europe, 85 maize hybrids of economic importance, and their dent and flint parental components with 55 SSRs. LD was significant at probability level P=0.01 for 20.2% of the SSR marker pairs in the 82 dent lines and for 17.2% in the 66 flint lines. The dent and flint heterotic groups were clearly separated already at the beginning of hybrid breeding in Central Europe. Furthermore, the genetic variation within and among varieties decreased significantly during the five decades. The five OPVs contain numerous unique alleles that were absent in the elite flint pool. Consequently, OPVs could present useful sources for broadening the genetic base of elite maize breeding germplasm.  相似文献   

10.
Genetic parameters of body weight at 4 (W4 w), 8 (W8 w) and 22 (W22 w) weeks of age, days from 20 to 100 kg (DT), average backfat thickness at 100 kg (ABT), teat number (TEAT), number of good teats (GTEAT), total number of piglets born (TNB), born alive (NBA) and weaned (NW) per litter, and birth to weaning survival rate (SURV) were estimated in the Chinese × European Tiameslan composite line using restricted maximum likelihood methodology applied to a multiple trait animal model. Performance data from a total of 4 881 males and 4 799 females from 1 341 litters were analysed. Different models were fitted to the data in order to estimate the importance of maternal effects on production traits, as well as genetic correlations between male and female performance. The results showed the existence of significant maternal effects on W4w, W8w and ABT and of variance heterogeneity between sexes for W22w, DT, ABT and GTEAT. Genetic correlations between sexes were 0.79, 0.71 and 0.82, respectively, for W22w, DT and ABT and above 0.90 for the other traits. Heritability estimates were larger than (ABT and TEAT) or similar to (other traits) average literature values. Some genetic antagonism was evidenced between production traits, particularly W4w, W8w and ABT, and reproductive traits.  相似文献   

11.
Adaptation to different environments may be a powerful source of genetic differentiation between populations. The biological traits selected in each environment can pleiotropically induce assortative mating between individuals of these genetically differentiated populations. This situation may facilitate sympatric speciation. Successful host shifts in phytophagous insects provide some of the best evidence for the ecological speciation that occurs, or has occurred, in sympatry. The European corn borer, Ostrinia nubilalis (Lepidoptera: Crambidae), colonized maize after its introduction into Europe by humans about 500 years ago. In northern France, two sympatric host races feed on maize (Zea mays) and mugwort (Artemisia vulgaris), respectively. We investigated the factors involved in the genetic isolation of these two races at a field site near Paris, France. We identified two biological differences that might make a significant contribution to the genetic divergence between sympatric populations feeding on the two host plants. First, assortative mating may be due to differences in the moth emergence pattern between the two races: mugwort-race moths emerged on average 10 days earlier than maize-race moths. In addition, the males emerged earlier than females in both races. Hence, the likelihood of mating between maize-race males and mugwort-race females was higher than that of mating between mugwort-race males and maize-race females. Second, the females feeding on mugwort and maize produced sex pheromones with different E/Z isomeric ratios of delta-11-tetradecenyl acetate. This difference in mate recognition systems reinforces the potential for assortative mating in the two races. During the experiment, overwintering mortality was much lower on maize than on mugwort. This difference was due to a braconid parasitoid wasp, Macrocentrus cingulum, that killed more than 50% of the larvae overwintering on mugwort but did not infest larvae diapausing on maize. Hence, by colonizing maize, European corn borer populations probably escaped from numerous predators, competitors, and parasitoids, such as M. cingulum. This decrease in host-associated selection may have favored the colonization of this new host. Finally, throughout this experiment we observed selection at two allozyme loci (or at linked loci): Tpi and Mpi. The Tpi locus is tightly linked with the genes involved in the response of the male to the sex pheromone and in developmental timing. The location of these traits on the Z chromosome may play a role in shortening the time required for the evolution of premating barriers.  相似文献   

12.
Lipids in the sex pheromone gland of females of the Z-strain of Ostrinia nubilalis were analyzed for fatty acyl pheromone analogs (FAPAs) and other potential biosynthetic intermediates. More than 80% of the FAPAs were found in the triacylglycerols (TGs), with smaller amounts found in the phosphatidyl cholines, ethanolamines, and serines. Analysis of the TGs by lipase revealed that the two FAPAs were distributed fairly evenly among all three stereospecific positions. Comparison of changes in titers of key glandular fatty acids with those of pheromone components, with respect to photoperiodic time and age of females, showed that both FAPA and pheromone titers exhibited a cyclical pattern with peaks in the scotophase and valleys in the photophase. However, whereas pheromone titer tended to peak in the first half of the scotophase, FAPA titer peaked at the end of the scotophase. Significantly, the titer of the FAPA of the minor component, (E)-11-tetradecenyl acetate (3% of pheromone), was always much greater than the titer of the FAPA of the major component, (Z)-11-tetradecenyl acetate (97%), of the pheromone. Titer of myristate, an intermediate in pheromone biosynthesis, was also higher during the scotophase than the photophase. However, myristate titer showed a pronounced dip in the middle of the scotophase. These data suggest two roles for glandular lipids in sex pheromone biosynthesis in O. nubilalis. Firstly, they remove excess FAPA of the minor component so the fatty acid reductase system is not presented with a high ratio of this isomer (which would otherwise result from the reductase's own selectivity), which could cause changes in the final pheromone ratio. Secondly, hydrolysis of the large amounts of stored saturated fatty acids from the TGs may provide substrate for pheromone biosynthesis.  相似文献   

13.
Expected future cellulosic ethanol production increases the demand for biomass in the US Corn Belt. With low nutritious value, low nitrogen content, and compact biomass, maize cobs can provide a significant amount of cellulosic materials. The value of maize cobs depends on cob architecture, chemical composition, and their relation to grain yield as primary trait. Eight traits including cob volume, fractional diameters, length, weight, tissue density, and grain yield have been analyzed in this quantitative trait locus (QTL) mapping experiment to evaluate their inheritance and inter-relations. One hundred eighty-four recombinant inbred lines of the intermated B73?×?Mo17 (IBM) Syn 4 population were evaluated from an experiment carried out at three locations and analyzed using genotypic information of 1,339 public SNP markers. QTL detection was performed using (1) comparison-wise thresholds with reselection of cofactors (α?=?0.001) and (2) empirical logarithm of odds score thresholds (P?=?0.05). Several QTL with small genetic effects (R 2?=?2.9–13.4 %) were found, suggesting a complex quantitative inheritance of all traits. Increased cob tissue density was found to add value to the residual without a commensurate negative impact on grain yield and therefore enables for simultaneous selection for cob biomass and grain yield.  相似文献   

14.
Thirteen populations ofLarix decidua subsp.decidua and subsp.polonica, and three populations ofL. sibirica were investigated by starch-gel electrophoresis. In the populations assayed 61 alleles at 17 loci were revealed. The allozyme data support the earlier observations about close relationships between these two larch species. Nei's genetic distances betweenL. decidua andL. sibirica were relatively small (D = 0.057), however, almost five times larger, on average, than those between populations of the same species. Results obtained in this study disagree withBobrov's hypothesis about the hybrid origin of the Polish larch and suggest a direct origin from the European larch.  相似文献   

15.
16.
Improvement of resistance to Fusarium head blight (FHB) is a continuous challenge for durum wheat breeders, particularly due to the limited genetic variation within this crop species. We accordingly generated a backcross-derived mapping population using the type 2 FHB resistant Triticum dicoccoides line Mt. Gerizim #36 as donor and the modern Austrian T. durum cultivar Helidur as recipient; 103 BC1F6:7 lines were phenotyped for type 2 FHB resistance using single-spikelet inoculations and genotyped with 421 DNA markers (SSR and AFLP). QTL mapping revealed two highly significant QTL, mapping to chromosomes 3A and 6B, respectively. For both QTL the T. dicoccoides allele improved type 2 FHB resistance. Recombinant lines with both favorable alleles fixed conferred high resistance to FHB similar to that observed in the T. dicoccoides parent. The results appear directly applicable for durum wheat resistance breeding.  相似文献   

17.
Fusarium head blight (FHB) is a serious disease in wheat and barley affecting both yield and quality. To identify genes for resistance to infection, the RIL population derived from ‘Nanda2419’ × ‘Wangshuibai’ and the parents were evaluated for percentage of infected spikes (PIS) in four different environments. Using a 2,960 cM marker framework map constructed for this population, ten chromosome regions were detected for their association with type I resistance through interval mapping with Mapmaker/QTL, among which QTLs mapped in the intervals of Xwmc349~Xgwm149 on chromosome 4B, of Xwmc96~Xgwm304 on chromosome 5A and of Xgwm408~Xbarc140 on chromosome 5B were revealed in at least three environments and have Wangshuibai as the source of resistance alleles. Qfhi.nau-4B and Qfhi.nau-5A had larger effects and explained up to 17.5 and 27.0% of the phenotypic variance, respectively. To detect epistasis QTLs, two-locus interactions were examined by whole genome scan. Interactions of five locus pairs were found to have significant effects on type I resistance with the LOD score ranging 3.8–6.5 and four of them conferred resistance in parental phase. The one with the most significant effect was Xcfd42~Xgwm469 (6D)/Xwmc390-2~Xbd04 (2A) pair. No QTL × E interaction was detected for PIS. It was found that flowering time did not have significant effects on PIS in this population. Our studies indicated that Wangshuibai is useful for breeding for both type I and type II scab resistance and the markers associated with the QTLs could be used in marker-assisted selection and isolation of scab-resistance QTLs. F. Lin and S.L. Xue equally contributed to this article  相似文献   

18.
The anatomy of the neurosecretory cells in the brain-subesophageal ganglion complex of female European corn borer moth Ostrinia nubilalis (Lepidoptera: Pyralidae) was studied using histological and cobalt backfilling techniques. Histological staining revealed the presence of 2 median and one lateral neurosecretory cell groups in the brain. These brain neurosecretory cells are made up of mainly type A cells with a few type B cells in the median group. Three type C neurosecretory cell clusters occupy the apparent mandibular, maxillary, and labial neuromeres at the ventral median aspect of the subesophageal ganglion. Axonal pathways of the neurosecretory cell groups were delineated by retrograde cobalt filling from the corpora cardiaca. Fibers of the 3 brain neurosecretory cell groups merged to form a distinct axonal tract that exits the brain via the fused nervi corporis cardiaci-1 + 2. Cobalt backfilling from the corpora cardiaca filled 4 groups of cell bodies in the subesophageal ganglion. The presence in the subesophageal ganglion of extensive dendritic arborizations derived from the brain suggests interactions between neurosecretory cell groups in the 2 head ganglia.  相似文献   

19.
Yellow or stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of common wheat (Triticum aestivum L.) worldwide. A recombinant inbred line (RIL) population, derived from the cross PBW343 × Kenya Kudu, was phenotyped for yellow rust reaction in the field at the CIMMYT research station near Toluca, Mexico, during 2010 and 2011. Segregation results indicated the presence of a race-specific resistance gene, temporarily designated as YrKK, in Kenya Kudu that conferred immunity to adult plants in field trials, despite conferring only slight reductions in seedling reactions in greenhouse tests with three Mexican pathotypes. A minimum of four minor genes having additive effects also segregated in the population and were likely derived from both parents. A total of 635 simple sequence repeat (SSR) primers were screened for polymorphism surveys on the parents, and resistant (YrKK-possessing RILs) and susceptible (YrKK-lacking RILs) bulks identified four polymorphic markers. These markers were located on the short arm of chromosome 2B. Genotyping of the entire RIL population identified Xgwm148 and Xwmc474 as the most closely linked proximal and distal flanking SSR markers, with respective genetic distances of 3.6 and 1.8 cM from YrKK. Four yellow rust resistance genes (Yr27, Yr31, Yr41, and YrP81) are located on chromosome 2BS; however, their specificity to pathogen pathotypes and host reactions in seedling and adult plants indicate that YrKK is a new resistance gene.  相似文献   

20.
Breeding for resistance to Septoria tritici blotch (STB), caused by Mycosphaerella graminicola (anamorph: Septoria tritici), is an essential component in controlling this important foliar disease of wheat. Inheritance of seedling resistance to seven worldwide pathogen isolates has been studied in a doubled-haploid (DH) population derived from a cross between the field resistant cultivar Solitär and the susceptible cultivar Mazurka. Multiple quantitative trait locus (QTL) mapping revealed major and minor genetic effects on resistance as well as several epistatic relationships in the seedling stage. Solitär conferred resistance to isolate IPO323, governed by Stb6 on chromosome 3A, as well as to IPO99015, IPO92034, Hu1 and Hu2 controlled by a QTL on chromosome arm 1BS, possibly corresponding to Stb11 and minor QTL on chromosomes 1B, 3D, 6B and 7D. Resistance of Mazurka to IPO90015 and BBA22 was caused by a QTL located in a region on 4AL which harbours Stb7 or Stb12. QTL specific to pycnidial coverage on 3B and specific to necrosis on 1A could be discovered for isolate IPO92034. Pairwise epistatic interactions were reliably detected with five isolates. Although their contributions to the total variance are generally low, the genotypic effect of the QTL by QTL interaction of 4AL (Stb7 or Stb12) and 3AS (Stb6) made up almost 15% of disease expression. Altogether, the results suggest a complex inheritance of resistance to STB in the seedling stage in terms of isolate-specificity and resistance mechanisms, which have implications for marker-assisted breeding in an attempt to pyramid STB resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号