首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The boomerang-like H subunit of A(1)A(0) ATP synthase forms one of the peripheral stalks connecting the A(1) and A(0) sections. Structural analyses of the N-terminal part (H1-47) of subunit H of the A(1)A(0) ATP synthase from Methanocaldococcus jannaschii have been performed by NMR spectroscopy. Our initial NMR structural calculations for H1-47 indicate that amino acid residues 7-44 fold into a single alpha-helical structure. Using the purified N- (E1-100) and C-terminal domains (E101-206) of subunit E, NMR titration experiments revealed that the N-terminal residues Met1-6, Lys10, Glu11, Ala15, Val20 and Glu24 of H1-47 interact specifically with the N-terminal domain E1-100 of subunit E. A more detailed picture regarding the residues of E1-100 involved in this association was obtained by titration studies using the N-terminal peptides E1-20, E21-40 and E41-60. These data indicate that the N-terminal tail E41-60 interacts with the N-terminal amino acids of H1-47, and this has been confirmed by fluorescence correlation spectroscopy results. Analysis of (1)H-(15)N heteronuclear single quantum coherence (HSQC) spectra of the central stalk subunit F in the presence and absence of E101-206 show no obvious interaction between the C-terminal domain of E and subunit F. The data presented provide, for the first time, structural insights into the interaction of subunits E and H, and their arrangement within A(1)A(0) ATP synthase.  相似文献   

2.
Ni ZL  Shi XB  Wei JM 《Biochemistry》2004,43(8):2272-2278
Mutagenesis was used to generate seven truncation mutants of the spinach (Spinacia oleracea) chloroplast ATP synthase delta subunit lacking 5, 11, 17, or 35 amino acid residues from the N-terminus or 3, 9, or 15 residues from the C-terminus. Interactions between these mutants and all other subunits of the chloroplast ATPase were investigated by a yeast two-hybrid system. The results indicate that the N-terminal deletions mainly affected interactions between the delta subunit and the other part of CF(1), but did not significantly affect interactions with the CF(0) sector. In contrast, C-terminal truncations of the delta subunit mainly affected its interaction with the CF(0) sector and caused little impairment in interactions with the other part of CF(1). The conformation of the delta subunit C-terminal domain seems to be more sensitive to the truncations, as shown by minimal expression driven by C-terminal deleted (nine residues) mutants. Further studies showed C-terminal truncations of the delta subunit greatly impaired its ability to restore cyclic photophosphorylation in NaBr vesicles, whereas N-terminal truncations had little effect on the ability of delta to plug the CF(0) channel. None of the mutants impaired ATP hydrolysis by CF(1).  相似文献   

3.
Biuković G  Rössle M  Gayen S  Mu Y  Grüber G 《Biochemistry》2007,46(8):2070-2078
The H subunit of the A1AO ATP synthase is a component of one of the peripheral stalks connecting the A1 and AO domain. Subunit H of the Methanocaldococcus jannaschii A1AO ATP synthase was analyzed by small-angle X-ray scattering (SAXS) in order to determine the first low-resolution structure of this molecule in solution. Independent to the concentration used, the protein is dimeric and has a boomerang-like shape, divided into two arms of 12.0 and 6.8 nm in length. Circular dichroism (CD) spectroscopy revealed that subunit H is comprised of 78% alpha-helix and a coiled-coil arrangement. To understand the orientation of the helices and the localization of the N- and C-termini inside the dimer, three truncated forms of subunit H (H8-104, H1-98, and H8-98) were expressed, purified, and analyzed by CD. SAXS experiments of H1-98 show that the maximum dimension of the truncated protein dropped to 15.1 nm. Comparison of the low-resolution shapes of H and H1-98 indicates that this goes along with structural changes in the C-terminal arm of the boomerang-like structure. Together with the result of a disulfide formation of a fourth truncated form, H1-47, with a cysteine at position 47, the data suggest a parallel alpha-helical interaction. In addition, all four truncated proteins are dimeric in solution. Tryptophan emission spectra showed specific binding of H and H8-104 to the neighboring, catalytic A subunit, which could not be detected in the presence of H1-98. Finally, the arrangement of H within the A1AO ATP synthase is presented.  相似文献   

4.
Subunit h, a 92-residue-long, hydrophilic, acidic protein, is a component of the yeast mitochondrial F1Fo ATP synthase. This subunit, homologous to the mammalian factor F6, is essential for the correct assembly and/or functioning of this enzyme since yeast cells lacking it are not able to grow on nonfermentable carbon sources. Chemical cross-links between subunit h and subunit 4 have previously been shown, suggesting that subunit h is a component of the peripheral stalk of the F1Fo ATP synthase. The construction of cysteine-containing subunit h mutants and the use of bismaleimide reagents provided insights into its environment. Cross-links were obtained between subunit h and subunits alpha, f, d, and 4. These results and secondary structure predictions allowed us to build a structural model and to propose that this subunit occupies a central place in the peripheral stalk between the F1 sector and the membrane. In addition, subunit h was found to have a stoichiometry of one in the F1Fo ATP synthase complex and to be in close proximity to another subunit h belonging to another F1Fo ATP synthase in the inner mitochondrial membrane. Finally, functional characterization of mitochondria from mutants expressing different C-terminal shortened subunit h suggested that its C-terminal part is not essential for the assembly of a functional F1Fo ATP synthase.  相似文献   

5.
The H subunit of the yeast V-ATPase is an extended structure with two relatively independent domains, an N-terminal domain consisting of amino acids 1-348 and a C-terminal domain consisting of amino acids 352-478. We have expressed these two domains independently and together in a yeast strain lacking the H subunit (vma13Delta mutant). The N-terminal domain partially complements the growth defects of the mutant and supports approximately 25% of the wild-type Mg(2+)-dependent ATPase activity in isolated vacuolar vesicles, but surprisingly, this activity is both largely concanamycin-insensitive and uncoupled from proton transport. The C-terminal domain does not complement the growth defects, and supports no ATP hydrolysis or proton transport, even though it is recruited to the vacuolar membrane. Expression of both domains in a vma13Delta strain gives better complementation than either fragment alone and results in higher concanamycin-sensitive ATPase activity and ATP-driven proton pumping than the N-terminal domain alone. Thus, the two domains make complementary contributions to structural and functional coupling of the peripheral V(1) and membrane V(o) sectors of the V-ATPase, but this coupling does not require that they be joined covalently. The N-terminal domain alone is sufficient for activation of ATP hydrolysis in V(1), but the C-terminal domain is essential for proper communication between the V(1) and V(o) sectors.  相似文献   

6.
Alpha subunit of Escherichia coli ATP synthase was expressed with a C-terminal 6-His tag and purified. Pure alpha was monomeric, was competent in nucleotide binding, and had normal N-terminal sequence. In F1 subunit dissociation/reassociation experiments it supported full reconstitution of ATPase, and reassociated complexes were able to bind to F1-depleted membranes with restoration of ATP-driven proton pumping. Therefore interaction between the stator delta subunit and the N-terminal residue 1-22 region of alpha occurred normally when pure alpha was complexed with other F1 subunits. On the other hand, three different types of experiments showed that no interaction occurred between pure delta and isolated alpha subunit. Unlike in F1, the N-terminal region of isolated alpha was not susceptible to trypsin cleavage. Therefore, during assembly of ATP synthase, complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. We suggest that the N-terminal 1-22 residues of alpha are sequestered in isolated alpha until released by binding of beta to alpha subunit. This prevents 1/1 delta/alpha complexes from forming and provides a satisfactory explanation of the stoichiometry of one delta per three alpha seen in the F1 sector of ATP synthase, assuming that steric hindrance prevents binding of more than one delta to the alpha3/beta3 hexagon. The cytoplasmic fragment of the b subunit (bsol) did not bind to isolated alpha. It might also be that complexation of alpha with beta subunits is prerequisite for direct binding of stator b subunit to the F1-sector.  相似文献   

7.
The effects of domain assembly on the conformation of the F1 (N-terminal) and F2 (C-terminal) domains of the beta 2 subunit of Escherichia coli tryptophan synthase (EC 4.2.1.20) were analysed using six monoclonal antibodies which recognize six different epitopes of the native beta 2 subunit (five carried by the F1 domain and one carried by the F2 domain). For this purpose, the affinity constant of each monoclonal antibody for the isolated domains F1 or F2, the associated domains in the trypsin-nicked apo-beta 2 and in the native apo-beta 2 subunits were determined, both with the intact immunoglobulin and the Fab fragment. It was found that the association of the F1 and F2 domains within beta 2 is accompanied by structural changes of the two domains, as detected by variations of their affinity constants for the monoclonal antibodies.  相似文献   

8.
Bueler SA  Rubinstein JL 《Biochemistry》2008,47(45):11804-11810
ATP synthase from Saccharomyces cerevisiae is an approximately 600 kDa membrane protein complex. The enzyme couples the proton motive force across the mitochondrial inner membrane to the synthesis of ATP from ADP and inorganic phosphate. The peripheral stalk subcomplex acts as a stator, preventing the rotation of the soluble F 1 region relative to the membrane-bound F O region during ATP synthesis. Component subunits of the peripheral stalk are Atp5p (OSCP), Atp4p (subunit b), Atp7p (subunit d), and Atp14p (subunit h). X-ray crystallography has defined the structure of a large fragment of the bovine peripheral stalk, including 75% of subunit d (residues 3-123). Docking the peripheral stalk structure into a cryo-EM map of intact yeast ATP synthase showed that residue 123 of subunit d lies close to the bottom edge of F 1. The 37 missing C-terminal residues are predicted to either fold back toward the apex of F 1 or extend toward the membrane. To locate the C terminus of subunit d within the peripheral stalk of ATP synthase from S. cerevisiae, a biotinylation signal was fused to the protein. The biotin acceptor domain became biotinylated in vivo and was subsequently labeled with avidin in vitro. Electron microscopy of the avidin-labeled complex showed the label tethered close to the membrane surface. We propose that the C-terminal region of subunit d spans the gap from F 1 to F O, reinforcing this section of the peripheral stalk.  相似文献   

9.
F1 is a soluble part of FoF1-ATP synthase and performs a catalytic process of ATP hydrolysis and synthesis. The γ subunit, which is the rotary shaft of F1 motor, is composed of N-terminal and C-terminal helices domains, and a protruding Rossman-fold domain located between the two major helices parts. The N-terminal and C-terminal helices domains of γ assemble into an antiparallel coiled-coil structure, and are almost embedded into the stator ring composed of α3β3 hexamer of the F1 molecule. Cyanobacterial and chloroplast γ subunits harbor an inserted sequence of 30 or 39 amino acids length within the Rossman-fold domain in comparison with bacterial or mitochondrial γ. To understand the structure–function relationship of the γ subunit, we prepared a mutant F1-ATP synthase of a thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1, in which the γ subunit is split into N-terminal α-helix along with the inserted sequence and the remaining C-terminal part. The obtained mutant showed higher ATP-hydrolysis activities than those containing the wild-type γ. Contrary to our expectation, the complexes containing the split γ subunits were mostly devoid of the C-terminal helix. We further investigated the effect of post-assembly cleavage of the γ subunit. We demonstrate that insertion of the nick between two helices of the γ subunit imparts resistance to ADP inhibition, and the C-terminal α-helix is dispensable for ATP-hydrolysis activity and plays a crucial role in the assembly of F1-ATP synthase.  相似文献   

10.
Normal modes have been used to explore the inherent flexibility of the alpha, beta and gamma subunits of F(1)-ATPase in isolation and as part of the alpha(3)beta(3)gamma complex. It was found that the structural plasticity of the gamma and beta subunits, in particular, correlates with their functions. The N and C-terminal helices forming the coiled-coil domain of the gamma subunit are highly flexible in the isolated subunit, but more rigid in the alpha(3)beta(3)gamma complex due to interactions with other subunits. The globular domain of the gamma subunit is structurally relatively rigid when isolated and in the alpha(3)beta(3)gamma complex; this is important for its functional role in coupling the F(0) and F(1) complex of ATP synthase and in inducing the conformational changes of the beta subunits in synthesis. Most important, the character of the lowest-frequency modes of the beta(E) subunit is highly correlated with the large beta(E) --> beta(TP) transition. This holds for the C-terminal domain and the nucleotide-binding domain, which undergo significant conformational transitions in the functional cycle of F(1)-ATPase. This is most evident in the ligand-free beta(E) subunit; the flexibility in the nucleotide-binding domain is reduced somewhat in the beta(TP) subunit in the presence of Mg(2+).ATP. The low-frequency modes of the alpha(3)beta(3)gamma complex show that the motions of the globular domain of the gamma subunit and of the C-terminal and nucleotide binding domains of the beta(E) subunits are coupled, in accord with their function. Overall, the normal mode analysis reveals that F(1)-ATPase, like other macromolecular assemblies, has the intrinsic structural flexibility required for its function encoded in its sequence and three-dimensional structure. This inherent plasticity is an essential aspect of assuring a small free energy cost for the large-scale conformational transition that occurs in molecular motors.  相似文献   

11.
Studies reported here were undertaken to gain greater molecular insight into the complex structure of mitochondrial ATP synthase (F(0)F(1)) and its relationship to the enzyme's function and motor-related properties. Significantly, these studies, which employed N-terminal sequence, mass spectral, proteolytic, immunological, and functional analyses, led to the following novel findings. First, at the top of F(1) within F(0)F(1), all six N-terminal regions derived from alpha + beta subunits are shielded, indicating that one or more F(0) subunits forms a "cap." Second, at the bottom of F(1) within F(0)F(1), the N-terminal region of the single delta subunit and the C-terminal regions of all three alpha subunits are shielded also by F(0). Third, and in contrast, part of the gamma subunit located at the bottom of F(1) is already shielded in F(1), indicating that there is a preferential propensity for interaction with other F(1) subunits, most likely delta and epsilon. Fourth, and consistent with the first two conclusions above that specific regions at the top and bottom of F(1) are shielded by F(0), further proteolytic shaving of alpha and beta subunits at these locations eliminates the capacity of F(1) to couple a proton gradient to ATP synthesis. Finally, evidence was obtained that the F(0) subunit called "F(6)," unique to animal ATP synthases, is involved in shielding F(1). The significance of the studies reported here, in relation to current views about ATP synthase structure and function in animal mitochondria, is discussed.  相似文献   

12.
PilT is a hexameric ATPase required for bacterial type IV pilus retraction and surface motility. Crystal structures of ADP- and ATP-bound Aquifex aeolicus PilT at 2.8 and 3.2 A resolution show N-terminal PAS-like and C-terminal RecA-like ATPase domains followed by a set of short C-terminal helices. The hexamer is formed by extensive polar subunit interactions between the ATPase core of one monomer and the N-terminal domain of the next. An additional structure captures a nonsymmetric PilT hexamer in which approach of invariant arginines from two subunits to the bound nucleotide forms an enzymatically competent active site. A panel of pilT mutations highlights the importance of the arginines, the PAS-like domain, the polar subunit interface, and the C-terminal helices for retraction. We present a model for ATP binding leading to dramatic PilT domain motions, engagement of the arginine wire, and subunit communication in this hexameric motor. Our conclusions apply to the entire type II/IV secretion ATPase family.  相似文献   

13.
The enzyme acetohydroxyacid synthase (AHAS) catalyses the first common step in the biosynthesis of the three branched-chain amino acids. Enzymes in the AHAS family generally consist of regulatory and catalytic subunits. Here, we describe the first crystal structure of an AHAS regulatory subunit, the ilvH polypeptide, determined at a resolution of 1.75 A. IlvH is the regulatory subunit of one of three AHAS isozymes expressed in Escherichia coli, AHAS III. The protein is a dimer, with two beta alpha beta beta alpha beta ferredoxin domains in each monomer. The two N-terminal domains assemble to form an ACT domain structure remarkably close to the one predicted by us on the basis of the regulatory domain of 3-phosphoglycerate dehydrogenase (3PGDH). The two C-terminal domains combine so that their beta-sheets are roughly positioned back-to-back and perpendicular to the extended beta-sheet of the N-terminal ACT domain. On the basis of the properties of mutants and a comparison with 3PGDH, the effector (valine) binding sites can be located tentatively in two symmetrically related positions in the interface between a pair of N-terminal domains. The properties of mutants of the ilvH polypeptide outside the putative effector-binding site provide further insight into the functioning of the holoenzyme. The results of this study open avenues for further studies aimed at understanding the mechanism of regulation of AHAS by small-molecule effectors.  相似文献   

14.
F1-ATPase, a soluble part of the F0F1-ATP synthase, has subunit structure alpha3beta3gammadeltaepsilon in which nucleotide-binding sites are located in the alpha and beta subunits and, as believed, in none of the other subunits. However, we report here that the isolated epsilon subunit of F1-ATPase from thermophilic Bacillus strain PS3 can bind ATP. The binding was directly demonstrated by isolating the epsilon subunit-ATP complex with gel filtration chromatography. The binding was not dependent on Mg2+ but was highly specific for ATP; however, ADP, GTP, UTP, and CTP failed to bind. The epsilon subunit lacking the C-terminal helical hairpin was unable to bind ATP. Although ATP binding to the isolated epsilon subunits from other organisms has not been detected under the same conditions, a possibility emerges that the epsilon subunit acts as a built in cellular ATP level sensor of F0F1-ATP synthase.  相似文献   

15.
The 95 kDa subunit a of eukaryotic V-ATPases consists of a C-terminal, ion-translocating part and an N-terminal cytosolic domain. The latter's N-terminal domain (~40 kDa) is described to bind in an acidification-dependent manner with cytohesin-2 (ARNO), giving the V-ATPase the putative function as pH-sensing receptor. Recently, the solution structure of the very N-terminal segment of the cytosolic N-terminal domain has been solved. Here we produced the N-terminal truncated form SCa??????? of the N-terminal domain (SCa?????) of the Saccharomyces cerevisiae V-ATPase and determined its low resolution solution structure, derived from SAXS data. SCa??????? shows an extended S-like conformation with a width of about 3.88 nm and a length of 11.4 nm. The structure has been superimposed into the 3D reconstruction of the related A?A? ATP synthase from Pyrococcus furiosus, revealing that the SCa??????? fits well into the density of the collar structure of the enzyme complex. To understand the importance of the C-terminus of the protein SCa?????, and to determine the localization of the N- and C-termini in SCa???????, the C-terminal truncated form SCa??????? was produced and analyzed by SAXS. Comparison of the SCa??????? and SCa??????? shapes showed that the additional loop region in SCa??????? consists of the C-terminal residues. Whereas SCa??????? is monomeric in solution, SCa??????? forms a dimer, indicating the importance of the very C-terminus in structure formation. Finally, the solution structure of SCa??????? and SCa??????? will be discussed in terms of the topological arrangement of subunit a and cytoheisn-2 in V-ATPases.  相似文献   

16.
Four double mutants in the epsilon subunit were generated, each containing two cysteines, which, based on the NMR structure of this subunit, should form internal disulfide bonds. Two of these were designed to generate interdomain cross-links that lock the C-terminal alpha-helical domain against the beta-sandwich (epsilonM49C/A126C and epsilonF61C/V130C). The second set should give cross-linking between the two C-terminal alpha-helices (epsilonA94C/L128C and epsilonA101C/L121C). All four mutants cross-linked with 90-100% efficiency upon CuCl(2) treatment in isolated Escherichia coli ATP synthase. This shows that the structure obtained for isolated epsilon is essentially the same as in the assembled complex. Functional studies revealed increased ATP hydrolysis after cross-linking between the two domains of the subunit but not after cross-linking between the C-terminal alpha-helices. None of the cross-links had any effect on proton pumping-coupled ATP hydrolysis, on DCCD sensitivity of this activity, or on ATP synthesis rates. Therefore, big conformational changes within epsilon can be ruled out as a part of the enzyme function. Protease digestion studies, however, showed that subtle changes do occur, since the epsilon subunit could be locked in an ADP or 5'-adenylyl-beta,gamma-imidodiphosphate conformation by the cross-linking with resulting differences in cleavage rates.  相似文献   

17.
A biotinylation signal has been fused to the C terminus of the oligomycin sensitivity conferral protein (OSCP) of the ATP synthase complex from Saccharomyces cerevisiae. The signal is biotinylated in vivo and the biotinylated complex binds avidin in vitro. By electron microscopy of negatively stained particles of the ATP synthase-avidin complex, the bound avidin has been localised close to the F(1) domain. The images were subjected to multi-reference alignment and classification. Because of the presence of a flexible linker between the OSCP and the biotinylation signal, the class-averages differ in the position of the avidin relative to the F(1) domain. These positions lie on an arc, and its centre indicates the position of the C terminus of the OSCP on the surface of the F(1) domain. Since the N-terminal region of the OSCP is known to interact with the N-terminal regions of alpha-subunits, which are on top of the F(1) domain distal from the F(o) membrane domain, the OSCP extends almost 10nm along the surface of F(1) down towards F(o) where it interacts with the C terminus of the b subunit, which extends up from F(o). The labelling technique has also allowed a reliable 2D projection map to be developed for the intact ATP synthase from S.cerevisiae. The map reveals a marked asymmetry in the F(o) part of the complex that can be attributed to subunits in the F(o) domain.  相似文献   

18.
The structure of the N-terminal transmembrane domain (residues 1-34) of subunit b of the Escherichia coli F0F1-ATP synthase has been solved by two-dimensional 1H NMR in a membrane mimetic solvent mixture of chloroform/methanol/H2O (4:4:1). Residues 4-22 form an alpha-helix, which is likely to span the hydrophobic domain of the lipid bilayer to anchor the largely hydrophilic subunit b in the membrane. The helical structure is interrupted by a rigid bend in the region of residues 23-26 with alpha-helical structure resuming at Pro-27 at an angle offset by 20 degrees from the transmembrane helix. In native subunit b, the hinge region and C-terminal alpha-helical segment would connect the transmembrane helix to the cytoplasmic domain. The transmembrane domains of the two subunit b in F0 were shown to be close to each other by cross-linking experiments in which single Cys were substituted for residues 2-21 of the native subunit and b-b dimer formation tested after oxidation with Cu(II)(phenanthroline)2. Cys residues that formed disulfide cross-links were found with a periodicity indicative of one face of an alpha-helix, over the span of residues 2-18, where Cys at positions 2, 6, and 10 formed dimers in highest yield. A model for the dimer is presented based upon the NMR structure and distance constraints from the cross-linking data. The transmembrane alpha-helices are positioned at a 23 degrees angle to each other with the side chains of Thr-6, Gln-10, Phe-14, and Phe-17 at the interface between subunits. The change in direction of helical packing at the hinge region may be important in the functional interaction of the cytoplasmic domains.  相似文献   

19.
Vacuolar proton-translocating ATPase pumps consist of two domains, V(1) and V(o). Subunit d is a component of V(o) located in a central stalk that rotates during catalysis. By generating mutations, we showed that subunit d couples ATP hydrolysis and proton transport. The mutation F94A strongly uncoupled the enzyme, preventing proton transport but not ATPase activity. C-terminal mutations changed coupling as well; ATPase activity was decreased by 59-72%, whereas proton transport was not measurable (E328A) or was moderately reduced (E317A and C329A). Except for W325A, which had low levels of V(1)V(o), mutations allowed wild-type assembly regardless of the fact that subunits E and d were reduced at the membrane. N- and C-terminal deletions of various lengths were inhibitory and gradually destabilized subunit d, limiting V(1)V(o) formation. Both N and C terminus were required for V(o) assembly. The N-terminal truncation 2-19Delta prevented V(1)V(o) formation, although subunit d was available. The C terminus was required for retention of subunits E and d at the membrane. In addition, the C terminus of its bacterial homolog (subunit C from T. thermophilus) stabilized the yeast subunit d mutant 310-345Delta and allowed assembly of the rotor structure with subunits A and B. Structural features conserved between bacterial and eukaryotic subunit d and the significance of domain 3 for vacuolar proton-translocating ATPase function are discussed.  相似文献   

20.
The subunit arrangement of the F0 sector of the Escherichia coli ATP synthase is examined using hydrophilic and hydrophobic (cleavable) cross-linking reagents and the water-soluble labeling reagent [35S] diazoniumbenzenesulfonate ( [35S]DABS). Cross-linking is performed on purified ATP synthase and inverted minicell membranes. ATP synthase incorporated into liposomes is labeled with [35S]DABS. Three cross-linked products involving the F0 subunits (a, b, and c) are observed with the purified ATP synthase in solution: a-b, b2, and c2 dimers. A cross-link between the F0 and F1 is detected and occurs between the a and beta subunits. A cross-linker independent association between the b and beta subunits is also evident, suggesting that the two subunits are close enough to form a disulfide bridge. A cross-linking reagent stable to reducing agents produces a b-beta dimer, as detected by immunoblotting with anti-beta serum. The c subunit does not cross-link with any F1 polypeptide. Minicell membranes containing ATP synthase polypeptides radioactively labeled in vivo similarly show b2 and c2 dimers after cross-linking. [35S]DABS labels the a and b, but not c, subunits, showing that the a and b, but not c, subunits possess hydrophilic domains. Thus, certain domains of subunits a and b extend from the membrane and are in close proximity to one another and the F1 catalytic subunit beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号