首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A common motif found in invertebrate serine proteases involved in immunity and development is the clip domain, proposed to regulate catalytic activity or protein-protein interactions within proteolytic cascades. Snake functions in a cascade that patterns the Drosophila embryo, and provides an accessible model for exploring the structural requirements for clip domain function. We tested Snake zymogens bearing charged-to-alanine mutations in the clip domain for their ability to rescue embryos lacking endogenous Snake and for their interactions by S2 cell co-transfection with upstream Gastrulation Defective and downstream Easter in the protease cascade. Of 13 single and multiple substitutions, one double mutant in a predicted protruding region exhibited a severe defect in embryonic rescue but showed only minimal defects in the co-transfection assay. We discuss implications of these and other results for potential biological roles of the Snake clip domain and for use of the in vitro assay in predicting protease behavior.  相似文献   

3.
Dorsoventral polarity of the Drosophila embryo requires maternal sp?tzle-Toll signaling to establish a nuclear gradient of Dorsal protein. The shape of this gradient is altered in embryos produced by females carrying dominant alleles of easter (ea(D)). The easter gene encodes a serine protease that generates processed Sp?tzle, which is proposed to act as the Toll ligand. By examining the expression domains of the zygotic genes zen, sog, rho and twist, which are targets of nuclear Dorsal, we show that the slope of the Dorsal gradient is progressively flattened in stronger ea(D) alleles. In the wild-type embryo, activated Easter is found in a high M(r) complex called Ea-X, which is hypothesized to contain a protease inhibitor. In ea(D) embryo extracts, we detect an Easter form corresponding to the free catalytic domain, which is never observed in wild type. These mutant ea(D) proteins retain protease activity, as determined by the production of processed Sp?tzle both in the embryo and in cultured Drosophila cells. These experiments suggest that the ea(D) mutations interfere with inactivation of catalytic Easter, and imply that this negative regulation is essential for generating the wild-type shape of the Dorsal gradient.  相似文献   

4.
D Stein  C Nüsslein-Volhard 《Cell》1992,68(3):429-440
Twelve maternal effect genes (the dorsal group and cactus) are required for the establishment of the embryonic dorsal-ventral axis in the Drosophila embryo. Embryonic dorsal-ventral polarity is defined within the perivitelline compartment surrounding the embryo by the ventral formation of a ligand for the Toll receptor. Here, by transplantation of perivitelline fluid we demonstrate the presence of three separate activities present in the perivitelline fluid that can restore dorsal-ventral polarity to mutant easter, snake, and sp?tzle embryos, respectively. These activities are not capable of defining the polarity of the dorsal-ventral axis; instead they restore structures according to the intrinsic dorsal-ventral polarity of the mutant embryos. They appear to be involved in the ventral formation of a ligand for the Toll protein. This process requires serine proteolytic activity; the injection of serine protease inhibitors into the perivitelline space of wild-type embryos results in the formation of dorsalized embryos.  相似文献   

5.
6.
The product of the Drosophila easter gene, a member of the trypsin family of serine proteases, must be more active ventrally than dorsally to promote normal embryonic polarity. The majority of the easter protein in the embryo is present in the unprocessed zymogen form and appears to be evenly distributed in the extracellular space, indicating that the asymmetric activity of wild-type easter must arise post-translationally. A dominant mutant form of easter that does not require cleavage of the zymogen for activity (ea delta N) is active both dorsally and ventrally. The ea delta N mutant bypasses the requirement for five other maternal effect genes, indicating that these five genes exert their effects on dorsal-ventral patterning solely by controlling the activation of the easter zymogen. We propose that dorsal-ventral asymmetry is initiated by a ventrally-localized molecule in the vitelline membrane that nucleates an easter zymogen activation complex, leading to the production of ventrally active easter enzyme.  相似文献   

7.
D M Epstein  R H Abeles 《Biochemistry》1992,31(45):11216-11223
The function of a hydrogen bond network, comprised of the hydroxyl groups of Tyr 171 and Ser 214, in the hydrophobic S2 subsite of alpha-lytic protease, was investigated by mutagenesis and the kinetics of a substrate analog series. To study the catalytic role of the Tyr 171 and Ser 214 hydroxyl groups, Tyr 171 was converted to phenylalanine (Y171F) and Ser 214 to alanine (S214A). The double mutant (Y171F: S214A) also was generated. The single S214A and double Y171F:S214A mutations cause differential effects on catalysis and proenzyme processing. For S214A, kcat/Km is (4.9 x 10(3))-fold lower than that of wild type and proenzyme processing is blocked. For the double mutant (Y171F:S214A), kcat/Km is 82-fold lower than that of wild type and proenzyme processing occurs. In Y171F, kcat/Km is 34-fold lower than that of wild type, and the proenzyme is processed. The data indicate that Ser 214, although conserved among serine proteases and hydrogen bonded to the catalytic triad [Brayer, G. D., Delbaere, L. T. J., & James, M. N. G. (1979) J. Mol. Biol. 131, 743], is not essential for catalytic function in alpha-lytic protease. A substrate series (in which peptide length is varied) established that the mutations (Y171F and Y171F:S214A) do not alter enzyme-substrate interactions in subsites other than S2. The pH dependence of kcat/Km for Y171F and Y171F:S214A has changed less than 0.5 unit from that of wild type; this suggests the catalytic triad is unperturbed. In wild type, hydrophobic interactions at S2 increase kcat/Km by up to (1.2 x 10(3))-fold with no effect on Km.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
10.
LeMosy EK  Leclerc CL  Hashimoto C 《Genetics》2000,154(1):247-257
The nudel gene of Drosophila is maternally required both for structural integrity of the egg and for dorsoventral patterning of the embryo. It encodes a structurally modular protein that is secreted by ovarian follicle cells. Genetic and molecular studies have suggested that the Nudel protein is also functionally modular, with a serine protease domain that is specifically required for ventral development. Here we describe biochemical and immunolocalization studies that provide insight into the molecular basis for the distinct phenotypes produced by nudel mutations and for the interactions between these alleles. Mutations causing loss of embryonic dorsoventral polarity result in a failure to activate the protease domain of Nudel. Our analyses support previous findings that catalytic activity of the protease domain is required for dorsoventral patterning and that the Nudel protease is auto-activated and reveal an important role for a region adjacent to the protease domain in Nudel protease function. Mutations causing egg fragility and early embryonic arrest result in a significant decrease in extracellular Nudel protein, due to defects in post-translational processing, stability, or secretion. On the basis of these and other studies of serine proteases, we suggest potential mechanisms for the complementary and antagonistic interactions between the nudel alleles.  相似文献   

11.
We have studied the role of proteases during the development of Xenopus laevis embryos with the aid of protease inhibitors. The activity of proteases was found to be only minimal in the unfertilized egg and during the initiation of development, but activity began to increase at the morula stage. When the activity of proteases was inhibited by antipain, an inhibitor of endopeptidase activity, RNA synthesis in the embryo was inhibited. To examine the relationship between the inhibitory effect of antipain on protease activity and its effect on RNA synthesis, antipain was reduced with NaBH4 to inactivate its protease inhibitory activity. The reduced antipain did not inhibit RNA synthesis in the embryo. Antipain effectively inhibited synthesis of both rRNA and poly(A)+RNA but not 4S RNA. We therefore suggest that protease activity plays an important role in the initiation and/or continuation of RNA synthesis.  相似文献   

12.
In order to investigate in vivo splicing of group II introns in chloroplasts, we previously have integrated the mitochondrial intron rI1 from the green alga Scenedesmus obliquus into the Chlamydomonas chloroplast tscA gene. This construct allows a functional analysis of conserved intron sequences in vivo, since intron rI1 is correctly spliced in chloroplasts. Using site-directed mutagenesis, deletions of the conserved intron domains V and VI were performed. In another set of experiments, each possible substitution of the strictly conserved first intron nucleotide G1 was generated, as well as each possible single and double mutation of the tertiary base pairing gamma-gamma ' involved in the formation of the intron's tertiary RNA structure. In most cases, the intron mutations showed the same effect on in vivo intron splicing efficiency as they did on the in vitro self-splicing reaction, since catalytic activity is provided by the intron RNA itself. In vivo, all mutations have additional effects on the chimeric tscA -rI1 RNA, most probably due to the role played by trans -acting factors in intron processing. Substitutions of the gamma-gamma ' base pair lead to an accumulation of excised intron RNA, since intron stability is increased. In sharp contrast to autocatalytic splicing, all point mutations result in a complete loss of exon RNA, although the spliced intron accumulates to high levels. Intron degradation and exon ligation only occur in double mutants with restored base pairing between the gamma and gamma' sites. Therefore, we conclude that intron degradation, as well as the ligation of exon-exon molecules, depends on the tertiary intron structure. Furthermore, our data suggest that intron excision proceeds in vivo independent of ligation of exon-exon molecules.  相似文献   

13.
The tube protein plays an essential role in the signal transduction pathway that establishes dorsoventral polarity in the Drosophila melanogaster embryo. Characterization of each of four tube mutants revealed a substitution or insertion in the amino-terminal half of the protein. This portion of the tube protein is also evolutionarily conserved, as demonstrated by isolation and sequencing of the Drosophila virilis tube gene. Moreover, RNA microinjection assays and germline transformation experiments demonstrated that the amino-terminal domain alone provides substantial levels of gene function: constructs encoding only the amino-terminal domain restore dorsoventral polarity to embryos lacking any maternal tube function. In the carboxyterminal domain, sequence conservation is concentrated in the five octapeptide repeats. Although the repeat-containing domain by itself provides no rescue of the tube maternal effect phenotype, it is necessary for wild-type levels of tube activity. This domain is thus likely to play an ancillary role in axis formation.  相似文献   

14.
Snake venom proteases affecting hemostasis and thrombosis   总被引:24,自引:0,他引:24  
The structure and function of snake venom proteases are briefly reviewed by putting the focus on their effects on hemostasis and thrombosis and comparing with their mammalian counterparts. Up to date, more than 150 different proteases have been isolated and about one third of them structurally characterized. Those proteases are classified into serine proteases and metalloproteinases. A number of the serine proteases show fibrin(ogen)olytic (thrombin-like) activities, which are not susceptible to hirudin or heparin and perhaps to most endogenous serine protease inhibitors, and form abnormal fibrin clots. Some of them have kininogenase (kallikrein-like) activity releasing hypotensive bradykinin. A few venom serine proteases specifically activate coagulation factor V, protein C, plasminogen or platelets. The venom metalloproteinases, belonging to the metzincin family, generally show fibrin(ogen)olytic and extracellular matrix-degrading (hemorrhagic) activities. A few venom metalloproteinases show a unique substrate specificity toward coagulation factor X, platelet membrane receptors or von Willebrand factor. A number of the metalloproteinases have chimeric structures composed of several domains such as proteinase, disintegrin-like, Cys-rich and lectin-like domains. The disintegrin-like domain seems to facilitate the action of those metalloproteinases by interacting with platelet receptors. A more detailed analysis of snake venom proteases should find their usefulness for the medical and pharmacological applications in the field of thrombosis and hemostasis.  相似文献   

15.
ARH is required for normal endocytosis of the low density lipoprotein (LDL) receptor in liver and mutations within this gene cause autosomal recessive hypercholesterolemia in humans. xARH is a localized maternal RNA in Xenopus with an unknown function in oogenesis and embryogenesis. Like ARH, xARH contains a highly conserved phosphotyrosine binding domain and a clathrin box. To address the function of xARH, we examined its expression pattern in development and used pull-down experiments to assess interactions between xARH, lipoprotein receptors and proteins in embryo extracts. xARH was detected concentrated at the cell periphery as well as in the perinuclear region of oocytes and embryos. In pull-down experiments, the xARH phosphotyrosine binding domain interacted with the LDL and vitellogenin receptors found in Xenopus oocytes and embryos. Mutations within the receptor internalization signal specifically abolished this interaction. The xARH C-terminal region pulled-down several proteins from embryo extracts including alpha- and beta-adaptins, subunits of the AP-2 endocytic complex. Mutations within either of the two Dvarphi(F/W) motifs found in xARH abolished binding to alpha- and beta-adaptins. Expression of a dominant negative mutant of xARH missing the clathrin box and one functional Dvarphi(F/W) motif severely inhibited endocytosis of vitellogenin in cultured oocytes. The data indicate that xARH acts as an adaptor protein linking LDL and vitellogenin receptors directly with the AP-2 complex. In oocytes, we propose that xARH mediates the uptake of lipoproteins from the blood for storage in endosomes and later use in the embryo. Our findings point to an evolutionarily conserved function for ARH in lipoprotein uptake.  相似文献   

16.
Mutations of the maternal effect locus pelle (pll) cause dorsalized Drosophila embryos. In extreme mutants, the embryo develops into a long hollow tube of dorsal cuticular structures with no sign of ventral pattern elements. Injection of wild-type cytoplasm or poly(A)+RNA into mutant pll embryos partially restores the normal pattern. Rescuing activity is present in the wild-type cytoplasm until the late blastoderm stage, but is already absent from the poly(A)+RNA fraction by the time of pole cell formation. At the same time, pll embryos fail to respond to injected biologically active poly(A)+RNA. This indicates that pll+ mRNA is lost early from the pool of maternal RNA and that there is a non-RNA component of rescue. This component, most likely the pll+ protein, appears to be unequally distributed in wild-type embryos.  相似文献   

17.
18.
We have cloned and expressed microplasminogen (mPlg), consisting of the N-terminal undecapeptide of human glu-Plg spliced to its proenzyme domain. This truncated (approximately 28 kDa) proenzyme retained the distinctive catalytic activities of the larger parent. Replacement of M residues followed by M shuffling permitted subsequent scission by site-directed chemical proteolysis (in CNBr/formic acid) without impairing any of the protein's characteristic properties. Activation of chymotrypsinogen-related zymogens occurs by limited proteolysis; the newly liberated, highly conserved N-terminus (VVGG) forms a salt bridge with an aspartyl residue immediately upstream of the active site serine. The role of both of these elements in mPlg activation was probed using protein engineering and site-directed proteolysis to alter the length and amino acid composition of the N-terminus, and to replace the aspartate. All modifications affected both Km and Kcat. The results identify some structural parameters of the N-terminus required for proenzyme activation.  相似文献   

19.
20.
TheNeurospora crassamitochondrial tyrosyl-tRNA synthetase, the CYT-18 protein, functions in splicing group I introns by promoting the formation of the catalytically active structure of the intron RNA. The group I intron catalytic core is thought to consist of two extended helical domains, one formed by coaxial stacking of P5, P4, P6, and P6a (P4-P6 domain) and the other consisting of P8, P3, P7, and P9 (P3-P9 domain). To investigate how CYT-18 stabilizes the active RNA structure, we used anEscherichia coligenetic assay based on the phage T4tdintron to systematically test the ability of CYT-18 to compensate for structural defects in three key regions of the catalytic core: J3/4 and J6/7, connecting regions that form parts of the triple-helical-scaffold structure with the P4-P6 domain, and P7, a long- range base-pairing interaction that forms the guanosine-binding site and is part of the P3-P9 domain. Our results show that CYT-18 can suppress numerous mutations that disrupt the J3/4 and J6/7 nucleotide-triple interactions, as well as mutations that disrupt base-pairing in P7. CYT-18 suppressed mutations of phylogenetically conserved nucleotide residues at all positions tested, except for the universally conserved G-residue at the guanosine-binding site. Structure mapping experiments with selected mutant introns showed that the CYT-18-suppressible J3/4 mutations primarily impaired folding of the P4-P6 domain, while the J6/7 mutations impaired folding of both the P4-P6 and P3-P9 domains to various degrees. The P7 mutations impaired the formation of both P7 and P3, thereby grossly disrupting the P3-P9 domain. The finding that the P7 mutations also impaired formation of P3 provides evidence that the formation of these two long-range pairings is interdependent in thetdintron. Considered together with previous work, the nature of mutations suppressed by CYT-18 supports a model in which CYT-18 helps assemble the P4-P6 domain and then stabilizes the two major helical domains of the catalytic core in the correct relative orientation to form the intron's active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号