首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renovascular disease (RVD). Whether a targeted intervention in renal microcirculation could reverse renal damage is unknown. We hypothesized that intrarenal vascular endothelial growth factor (VEGF) therapy will reverse renal dysfunction and decrease renal injury in experimental RVD. Unilateral renal artery stenosis (RAS) was induced in 14 pigs, as a surrogate of chronic RVD. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified in vivo in the stenotic kidney using multidetector computed tomography (CT). Then, intrarenal rhVEGF-165 or vehicle was randomly administered into the stenotic kidneys (n = 7/group), they were observed for 4 additional wk, in vivo studies were repeated, and then renal MV density was quantified by 3D micro-CT, and expression of angiogenic factors and fibrosis was determined. RBF and GFR, MV density, and renal expression of VEGF and downstream mediators such as p-ERK 1/2, Akt, and eNOS were significantly reduced after 6 and at 10 wk of untreated RAS compared with normal controls. Remarkably, administration of VEGF at 6 wk normalized RBF (from 393.6 ± 50.3 to 607.0 ± 45.33 ml/min, P < 0.05 vs. RAS) and GFR (from 43.4 ± 3.4 to 66.6 ± 10.3 ml/min, P < 0.05 vs. RAS) at 10 wk, accompanied by increased angiogenic signaling, augmented renal MV density, and attenuated renal scarring. This study shows promising therapeutic effects of a targeted renal intervention, using an established clinically relevant large-animal model of chronic RAS. It also implies that disruption of renal MV integrity and function plays a pivotal role in the progression of renal injury in the stenotic kidney. Furthermore, it shows a high level of plasticity of renal microvessels to a single-dose VEGF-targeted intervention after established renal injury, supporting promising renoprotective effects of a novel potential therapeutic intervention to treat chronic RVD.  相似文献   

2.
Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution regarding antioxidant strategies in RAS.  相似文献   

3.
Renal artery stenosis (RAS) promotes microvascular rarefaction and fibrogenesis, which may eventuate in irreversible kidney injury. We have shown that percutaneous transluminal renal angioplasty (PTRA) or endothelial progenitor cells (EPC) improve renal cortical hemodynamics and function in the poststenotic kidney. The renal medulla is particularly sensitive to hypoxia, yet little is known about reversibility of medullary injury on restoration of renal blood flow. This study was designed to test the hypothesis that PTRA, with or without adjunct EPC delivery to the stenotic kidney, may improve medullary remodeling and tubular function. RAS was induced in 21 pigs using implantation of irritant coils, while another group served as normal controls (n = 7 each). Two RAS groups were then treated 6 wk later with PTRA or both PTRA and EPC. Four weeks later, medullary hemodynamics, microvascular architecture, and oxygen-dependent tubular function of the stenotic kidneys were examined using multidetector computed tomography, microcomputed tomography, and blood oxygenation level-dependent MRI, respectively. Medullary protein expression of vascular endothelial growth factor, endothelial nitric oxide synthase, hypoxia-inducible factor-1α, and NAD(P)H oxidase p47 were determined. All RAS groups showed decreased medullary vascular density and blood flow. However, in RAS+PTRA+EPC animals, EPC were engrafted in tubular structures, oxygen-dependent tubular function was normalized, and fibrosis attenuated, despite elevated expression of hypoxia-inducible factor-1α and sustained downregulation of vascular endothelial growth factor. In conclusion, EPC delivery, in addition to PTRA, restores medullary oxygen-dependent tubular function, despite impaired medullary blood and oxygen supply. These results support further development of cell-based therapy as an adjunct to revascularization of RAS.  相似文献   

4.
Diabetic nephropathy is a progressive and generalized vasculopathic condition associated with abnormal angiogenesis. We aim to determine whether changes in renal microvascular (MV) density correlate with and play a role in the progressive deterioration of renal function in diabetes. We hypothesize that MV changes represent the early steps of renal injury that worsen as diabetes progresses, initiating a vicious circle that leads to irreversible renal injury. Male nondiabetic (ND) or streptozotocin-induced diabetic (D) Sprague-Dawley rats were followed for 4 or 12 wk. Renal blood flow and glomerular filtration rate (GFR) were measured by PAH and (125)I-[iothalamate], respectively. Renal MV density was quantified ex vivo using three-dimensional micro computed tomography and JG-12 immunoreactivity. Vascular endothelial growth factor (VEGF) levels (ELISA) and expression of VEGF receptors and factors involved in MV remodeling were quantified in renal tissue by Western blotting. Finally, renal morphology was investigated by histology. Four weeks of diabetes was associated with increased GFR, accompanied by a 34% reduction in renal MV density and augmented renal VEGF levels. However, at 12 wk, while GFR remained similarly elevated, reduction of MV density was more pronounced (75%) and associated with increased MV remodeling, renal fibrosis, but unchanged renal VEGF compared with ND at 12 wk. The damage, loss, and subsequent remodeling of the renal MV architecture in the diabetic kidney may represent the initiating events of progressive renal injury. This study suggests a novel concept of MV disease as an early instigator of diabetic kidney disease that may precede and likely promote the decline in renal function.  相似文献   

5.
Metabolic syndrome (MetS) is associated with glomerular hyperfiltration and is a risk factor for chronic kidney disease, but the underlying mechanisms are poorly defined. This study tested the hypothesis that increased glomerular filtration rate (GFR) in early MetS is associated with renal adiposity and microvascular proliferation. Twelve MetS-prone Ossabaw pigs were randomized to 10 wk of a standard (lean, n = 6) or atherogenic (MetS, n = 6) diet. Kidney hemodynamics and function, perirenal fat volume, and tubular dynamics were assessed in vivo by multidetector computed tomography (CT) and blood oxygen level-dependent (BOLD)-MRI. Microvascular architecture was assessed ex vivo with micro-CT. Candidate injury mechanisms were evaluated in kidney tissue by Western blotting and histology. Basal GFR, renal blood flow, and renal cortical perfusion and volume were elevated in the MetS group. Perirenal and kidney tissue fat, proximal-nephron intratubular fluid concentration, and endothelial nitric oxide synthase expression were increased in MetS. GFR levels correlated with tissue triglyceride levels. Elevated spatial density of 20- to 40-μm cortical microvessels was accompanied by mild oxidative stress, inflammation, and with proximal tubular vacuolization. Medullary size and perfusion were relatively preserved, and BOLD-MRI showed intact medullary tubular response to furosemide. Increased GFR in early MetS is associated with renal adiposity and microvascular proliferation, which involve mainly the renal cortex and precede significant activation of oxidative stress and inflammation. Renal adiposity and proliferative microvessels may represent novel therapeutic targets for preserving renal function in early MetS.  相似文献   

6.
Percutaneous transluminal renal stenting (PTRS) does not consistently improve renal function in patients with atherosclerotic renovascular disease, but the mechanisms underlying irreversible kidney injury have not been fully elucidated. We hypothesized that renal dysfunction after PTRS is linked to ongoing renal microvascular (MV) remodeling. Pigs were studied after 10 wk of atherosclerosis and renal artery stenosis (ARAS), ARAS treated with PTRS 4 wk earlier, and normal controls (n = 10 each). Renal blood flow (RBF) and glomerular filtration rate (GFR) were studied using multidetector computer tomography. Renal microvascular architecture (micro-CT), angiogenic activity, oxidative stress, and fibrosis were evaluated ex vivo. Four weeks after PTRS, blood pressure was normalized. However, GFR and RBF remained similarly decreased in untreated ARAS and ARAS+PTRS (P < 0.05 vs. normal). MV rarefaction was unaltered after revascularization, and the spatial density of outer cortical microvessels correlated with residual GFR. Interstitial fibrosis and altered expression of proangiogenic and profibrotic factors persisted after PTRS. Tubulointerstitial injury in ARAS persisted 4 wk after mechanically successful PTRS, and vessel loss correlated with residual renal dysfunction. MV loss and fibrosis in swine ARAS might account for persistent renal dysfunction after PTRS and underscore the need to assess renal parenchymal disease before revascularization.  相似文献   

7.
Effective therapeutic strategies are needed to preserve renal function in patients with atherosclerotic renal artery stenosis (ARAS). Low-energy shockwave therapy (SW) and adipose tissue-derived mesenchymal stem/stromal cells (MSCs) both stimulate angiogenesis repair of stenotic kidney injury. This study tested the hypothesis that intrarenal delivery of adipose tissue-derived MSCs would enhance the capability of SW to preserve stenotic kidney function and structure. Twenty-two pigs were studied after 16 weeks of ARAS, ARAS treated with a SW regimen (bi-weekly for 3 weeks) with or without subsequent intrarenal delivery of adipose tissue-derived MSCs and controls. Four weeks after treatment, single-kidney renal blood flow (RBF) before and after infusion of acetylcholine, glomerular filtration rate (GFR), and oxygenation were assessed in vivo and the renal microcirculation, fibrosis, and oxidative stress ex vivo. Mean arterial pressure remained higher in ARAS, ARAS + SW, and ARAS + SW + MSC compared with normal. Both SW and SW + MSC similarly elevated the decreased stenotic kidney GFR and RBF observed in ARAS to normal levels. Yet, SW + MSC significantly improved RBF response to acetylcholine in ARAS, and attenuated capillary loss and oxidative stress more than SW alone. Density of larger microvessels was similarly increased by both interventions. Therefore, although significant changes in functional outcomes were not observed in a short period of time, adjunct MSCs enhanced pro-angiogenic effect of SW to improve renal microvascular outcomes, suggesting this as an effective stratege for long-term management of renovascular disease.  相似文献   

8.
We investigated the effects of dual renin-angiotensin system (RAS) blockade on angiotensin-converting enzyme-2 (Ace2) expression, hypertension, and renal proximal tubular cell (RPTC) apoptosis in type 1 diabetic Akita angiotensinogen (Agt)-transgenic (Tg) mice that specifically overexpress Agt in their RPTCs. Adult (11 wk old) male Akita and Akita Agt-Tg mice were treated with two RAS blockers (ANG II receptor type 1 blocker losartan, 30 mg·kg(-1)·day(-1)) and angiotensin-converting enzyme (ACE) inhibitor perindopril (4 mg·kg(-1)·day(-1)) in drinking water. Same-age non-Akita littermates and Agt-Tg mice served as controls. Blood pressure, blood glucose, and albuminuria were monitored weekly. The animals were euthanized at age 16 wk. The left kidneys were processed for immunohistochemistry and apoptosis studies. Renal proximal tubules were isolated from the right kidneys to assess gene and protein expression. Urinary ANG II and ANG 1-7 were quantified by ELISA. RAS blockade normalized renal Ace2 expression and urinary ANG 1-7 levels (both of which were low in untreated Akita and Akita Agt-Tg), prevented hypertension, albuminuria, tubulointerstitial fibrosis and tubular apoptosis, and inhibited profibrotic and proapoptotic gene expression in RPTCs of Akita and Akita Agt-Tg mice compared with non-Akita controls. Our results demonstrate the effectiveness of RAS blockade in preventing intrarenal RAS activation, hypertension, and nephropathy progression in diabetes and support the important role of intrarenal Ace2 expression in modulating hypertension and renal injury in diabetes.  相似文献   

9.
Microvascular rarefaction following an episode of acute kidney injury (AKI) is associated with renal hypoxia and progression toward chronic kidney disease. The mechanisms contributing to microvascular rarefaction are not well-understood, although disruption in local angioregulatory substances is thought to contribute. Matrix metalloproteinase (MMP)-9 is an endopeptidase important in modifying the extracellular matrix (ECM) and remodeling the vasculature. We examined the role of MMP-9 gene deletion on microvascular rarefaction in a rodent model of ischemic AKI. MMP-9-null mice and background control (FVB/NJ) mice were subjected to bilateral renal artery clamping for 20 min followed by reperfusion for 14, 28, or 56 days. Serum creatinine level in MMP-9-null mice 24 h after injury [1.4 (SD 0.8) mg/dl] was not significantly different from FVB/NJ mice [1.5 (SD 0.6) mg/dl]. Four weeks after ischemic injury, FVB/NJ mice demonstrated a 30-40% loss of microvascular density compared with sham-operated (SO) mice. In contrast, microvascular density was not significantly different in the MMP-9-null mice at this time following injury compared with SO mice. FVB/NJ mice had a 50% decrease in tissue vascular endothelial growth factor (VEGF) 2 wk after ischemic insult compared with SO mice. A significant difference in VEGF was not observed in MMP-9-null mice compared with SO mice. There was no significant difference in the liberation of angioinhibitory fragments from the ECM between MMP-9-null mice and FVB/NJ mice following ischemic injury. In conclusion, MMP-9 deletion stabilizes microvascular density following ischemic AKI in part by preserving tissue VEGF levels.  相似文献   

10.
Salt-sensitive hypertension and chronic kidney disease (CKD) following recovery from acute kidney injury (AKI) may occur secondary to incomplete repair, or by activation of circulating factors stimulated by injury. We created two types of renal injury induced by unilateral ischemia-reperfusion (I/R); in a direct/ipsilateral AKI group, rats were subjected to unilateral I/R and the untouched contralateral kidney was removed by unilateral nephrectomy after 5 wk to isolate effects on the injured kidney. In the remote/contralateral AKI group, the injured kidney was removed after 5 wk to isolate effects on the untouched kidney. When these animals were subsequently challenged with elevated dietary sodium for an additional 4 wk (0.4 to 4%), both remote/contralateral and direct/ipsilateral AKI rats manifested a significant increase in blood pressure relative to sham-operated controls. Similarly, in acute studies, both ipsilateral and contralateral kidneys had impaired pressure natriuresis and hemodynamic responses. Reductions in vascular density were observed following direct/ipsilateral injury, but were not observed in the remote/contralateral kidney. However, both remote/contralateral and direct/ipsilateral kidneys contained interstitial cells, some of which were identified as activated (low CD62L/CD4+) T lymphocytes. In contrast, only the direct/ipsilateral AKI group demonstrated significant CKD following exposure to elevated salt. This was characterized by a significant reduction in creatinine clearance, an increase in albuminuria, and a dramatic expansion of interstitial inflammation. Taken together, these data suggest that the salt-sensitive features of AKI on hypertension and CKD are segregable such that effects on hemodynamics and hypertension occur independent of direct renal damage. However, prior direct injury to the kidney is required to elicit the full manifestation of CKD induced by elevated sodium intake.  相似文献   

11.
Renal function and blood flow decline during aging in association with a decrease in the number of intrarenal vessels, but if loss of estrogen contributes to this microvascular, rarefaction remains unclear. We tested the hypothesis that the decreased renal microvascular density with age is aggravated by loss of estrogen. Six-month-old female C57/BL6 mice underwent ovariectomy (Ovx) or sham operation and then were allowed to age to 18-22 mo. Another comparable group was replenished with estrogen after Ovx (Ovx+E), while a 6-mo-old group served as young controls. Kidneys were then dissected for evaluation of microvascular density (by micro-computed tomography) and angiogenic and fibrogenic factors. Cortical density of small microvessels (20-200 μm) was decreased in all aged groups compared with young controls (30.3 ± 5.8 vessels/mm2, P < 0.05), but tended to be lower in sham compared with Ovx and Ovx+E (9.9 ± 1.7 vs. 17.2 ± 4.2 and 18 ± 3.0 vessels/mm2, P = 0.08 and P = 0.02, respectively). Cortical density of larger microvessels (200-500 μm) decreased only in aged sham (P = 0.04 vs. young control), and proangiogenic signaling was attenuated. On the other hand, renal fibrogenic mechanisms were aggravated in aged Ovx compared with aged sham, but blunted in Ovx+E, in association with downregulated transforming growth factor-β signaling and decreased oxidative stress in the kidney. Therefore, aging induced in female mice renal cortical microvascular loss, which was likely not mediated by loss of endogenous estrogen. However, estrogen may play a role in protecting the kidney by decreasing oxidative stress and attenuating mechanisms linked to renal interstitial fibrosis.  相似文献   

12.
Hypercholesterolemia (HC), a major risk factor for onset and progression of renal disease, is associated with increased oxidative stress, potentially causing endothelial dysfunction. One of the sources of superoxide anion is xanthine oxidase (XO), but its contribution to renal endothelial function in HC remains unclear. We tested the hypothesis that XO modulates renal hemodynamics and endothelial function in HC pigs. Four groups (n = 23) of female domestic pigs were studied 12 wk after either normal (n = 11) or HC diet (n = 12). Oxidative stress was assessed by plasma isoprostanes and oxidized LDL, and the XO system by plasma uric acid, urinary xanthine, and renal XO expression (by immunoblotting and immunohistochemistry). Renal hemodynamics and function were studied with electron beam-computed tomography before and after endothelium-dependent (ACh) and -independent (sodium nitroprusside) challenge, during a concurrent intrarenal infusion of either oxypurinol or saline (n = 5-6 in each group). HC showed elevated oxidative stress, higher plasma uric acid (23.8 +/- 3.8 vs. 6.2 +/- 0.8 microM/mM creatinine, P = 0.001), lower urinary xanthine, and greater renal XO expression compared with normal. Inhibition of XO in HC significantly improved the blunted responses to ACh of cortical perfusion (13.5 +/- 12.1 and 37.2 +/- 10.6%, P = 0.01 and P = not significant vs. baseline, respectively), renal blood flow, and glomerular filtration rate; restored medullary perfusion; and improved the blunted cortical perfusion response to sodium nitroprusside. This study demonstrates that the endogenous XO system is activated in swine HC. Furthermore, it suggests an important role for XO in regulation of renal hemodynamics, function, and endothelial function in experimental HC.  相似文献   

13.
The 5/6(th) nephrectomy or ablation/infarction (A/I) preparation has been used as a classic model of chronic kidney disease (CKD). We observed increased kidney oxygen consumption (Q(O2)) and altered renal hemodynamics in the A/I kidney that were normalized after combined angiotensin II (ANG II) blockade. Studies suggest hypoxia inducible factor as a protective influence in A/I. We induced hypoxia-inducible factor (HIF) and HIF target proteins by two different methods, cobalt chloride (CoCl(2)) and dimethyloxalyglycine (DMOG), for the first week after creation of A/I and compared the metabolic and renal hemodynamic outcomes to combined ANG II blockade. We also examined the HIF target proteins expressed by using Western blots and real-time PCR. Treatment with DMOG, CoCl(2), and ANG II blockade normalized kidney oxygen consumption factored by Na reabsorption and increased both renal blood flow and glomerular filtration rate. At 1 wk, CoCl(2) and DMOG increased kidney expression of HIF by Western blot. In the untreated A/I kidney, VEGF, heme oxygenase-1, and GLUT1 were all modestly increased. Both ANG II blockade and CoCl(2) therapy increased VEGF and GLUT1 but the cobalt markedly so. ANG II blockade decreased heme oxygenase-1 expression while CoCl(2) increased it. By real-time PCR, erythropoietin and GLUT1 were only increased by CoCl(2) therapy. Cell proliferation was modestly increased by ANG II blockade but markedly after cobalt therapy. Metabolic and hemodynamic abnormalities were corrected equally by ANG II blockade and HIF therapies. However, the molecular patterns differed significantly between ANG II blockade and cobalt therapy. HIF induction may prove to be protective in this model of CKD.  相似文献   

14.
Coronary artery disease is a leading cause of death. Hypertension (HT) increases the incidence of cardiac events, but its effect on cardiac adaptation to coexisting coronary artery stenosis (CAS) is unclear. We hypothesized that concurrent HT modulates microvascular function in chronic CAS and aggravates microvascular remodeling and myocardial injury. Four groups of pigs (n=6 each) were studied: normal, CAS, HT, and CAS+HT. CAS and HT were induced by placing local irritant coils in the left circumflex coronary artery and renal artery, respectively. Six weeks later multidetector computerized tomography (CT) was used to assess systolic and diastolic function, microvascular permeability, myocardial perfusion, and responses to adenosine in the "area at risk." Microvascular architecture, inflammation, and fibrosis were then explored in cardiac tissue. Basal myocardial perfusion was similarly decreased in CAS and CAS+HT, but its response to adenosine was significantly more attenuated in CAS. Microvascular permeability in CAS+HT was greater than in CAS and was accompanied by amplified myocardial inflammation, fibrosis, and microvascular remodeling, as well as cardiac systolic and diastolic dysfunction. On the other hand, compared with normal, micro-CT-derived microvascular (20-200 μm) transmural density decreased in CAS but not in HT or CAS+HT. We conclude that the coexistence of early renovascular HT exacerbated myocardial fibrosis and vascular remodeling distal to CAS. These changes were not mediated by loss of myocardial microvessels, which were relatively preserved, but possibly by exacerbated myocardial inflammation and fibrosis. HT modulates cardiac adaptive responses to CAS and bears cardiac functional consequences.  相似文献   

15.
ANG II is a potent renal vasoconstrictor and profibrotic factor and its activity is enhanced by oxidative stress. We sought to determine whether renal oxidative stress was persistent following recovery from acute kidney injury (AKI) induced by ischemia-reperfusion (I/R) injury in rats and whether this resulted in increased ANG II sensitivity. Rats were allowed to recover from bilateral renal I/R injury for 5 wk and renal blood flow responses were measured. Post-AKI rats showed significantly enhanced renal vasoconstrictor responses to ANG II relative to sham-operated controls and treatment of AKI rats with apocynin (15 mM, in the drinking water) normalized these responses. Recovery from AKI for 5 wk resulted in sustained oxidant stress as indicated by increased dihydroethidium incorporation in renal tissue slices and was normalized in apocynin-treated rats. Surprisingly, the renal mRNA expression for common NADPH oxidase subunits was not altered in kidneys following recovery from AKI; however, mRNA screening using PCR arrays suggested that post-AKI rats had decreased renal Gpx3 mRNA and an increased expression other prooxidant genes such as lactoperoxidase, myeloperoxidase, and dual oxidase-1. When rats were infused for 7 days with ANG II (100 ng·kg(-1)·min(-1)), renal fibrosis was not apparent in sham-operated control rats, but it was enhanced in post-AKI rats. The profibrotic response was significantly attenuated in rats treated with apocynin. These data suggest that there is sustained renal oxidant stress following recovery from AKI that alters both renal hemodynamic and fibrotic responses to ANG II, and may contribute to the transition to chronic kidney disease following AKI.  相似文献   

16.
Our objective was to investigate the functional role of hypercholesterolemia-associated myocardial neovascularization in early atherosclerosis using the antiangiogenic thalidomide. Experimental atherosclerosis is characterized by myocardial neovascularization, associated with a decrease in myocardial perfusion response to challenge, coronary endothelial dysfunction, and high oxidative stress. However, the functional significance of these neovessels is not known. Three groups of pigs (n = 6 each) were studied after 12 wk of normal or hypercholesterolemic diet without (HC) or with thalidomide (HC + Thal). Myocardial perfusion and permeability were assessed at baseline and in response to cardiac challenge, using electron beam computed tomography, and coronary endothelial function was assessed using organ chambers. Myocardial samples were scanned ex vivo with a three-dimensional microscopic computed tomography scanner, and the spatial density of the myocardial microvessels was quantified. Growth factors and oxidative stress were measured in the myocardial tissue. As a results of these procedures, myocardial perfusion response to adenosine and dobutamine was blunted in both HC and HC + Thal pigs compared with normal pigs (P < 0.05, HC and HC + Thal vs. normal) as was the coronary endothelial function. Myocardial permeability response to adenosine was increased in both HC and HC + Thal pigs compared with normal pigs (P < 0.05, HC and HC + Thal vs. normal, and HC + Thal vs. HC). The microvascular density was increased in HC pigs compared with normal pigs but normalized in HC + Thal pigs (P < 0.001 HC vs. normal and HC + Thal). HC + Thal pigs showed decreased expression of Flk-1 and basic FGF but increased expression of VEGF compared with normal and HC pigs. Oxidative stress was increased in both HC and HC + Thal pigs compared with normal pigs. In conclusion, chronic administration of thalidomide attenuates myocardial neovascularization in experimental HC pigs without affecting myocardial perfusion response to stimulation. This suggests that the myocardial neovascularization may not contribute to the attenuated myocardial perfusion response in hypercholesterolemia.  相似文献   

17.
Atherosclerotic renal artery stenosis (ARAS) raises blood pressure and can reduce kidney function. Revascularization of the stenotic renal artery alone does not restore renal medullary structure and function. This study tested the hypothesis that addition of mesenchymal stem cells (MSC) to percutaneous transluminal renal angioplasty (PTRA) can restore stenotic-kidney medullary tubular transport function and attenuate its remodeling. Twenty-seven swine were divided into three ARAS (high-cholesterol diet and renal artery stenosis) and a normal control group. Six weeks after ARAS induction, two groups were treated with PTRA alone or PTRA supplemented with adipose-tissue-derived MSC (10×106 cells intra-renal). Multi-detector computed tomography and blood-oxygenation-level-dependent (BOLD) MRI studies were performed 4 weeks later to assess kidney hemodynamics and function, and tissue collected a few days later for histology and micro-CT imaging. PTRA effectively decreased blood pressure, yet medullary vascular density remained low. Addition of MSC improved medullary vascularization in ARAS+PTRA+MSC and increased angiogenic signaling, including protein expression of vascular endothelial growth-factor, its receptor (FLK-1), and hypoxia-inducible factor-1α. ARAS+PTRA+MSC also showed attenuated inflammation, although oxidative-stress remained elevated. BOLD-MRI indicated that MSC normalized oxygen-dependent tubular response to furosemide (-4.3±0.9, −0.1±0.4, −1.6±0.9 and −3.6±1.0 s−1 in Normal, ARAS, ARAS+PTRA and ARAS+PTRA+MSC, respectively, p<0.05), which correlated with a decrease in medullary tubular injury score (R2 = 0.33, p = 0.02). Therefore, adjunctive MSC delivery in addition to PTRA reduces inflammation, fibrogenesis and vascular remodeling, and restores oxygen-dependent tubular function in the stenotic-kidney medulla, although additional interventions might be required to reduce oxidative-stress. This study supports development of cell-based strategies for renal protection in ARAS.  相似文献   

18.
肾脏疾病发展为慢性肾衰竭是个不可逆的过程,脂质代谢的异常,对肾病患者具有重要的影响。多项实验已经证实,即使在肾病的早期阶段,也会出现不同程度的脂质及脂类代谢的异常,高密度脂蛋白(HDL)、低密度脂蛋白(LDL)、脂联素、瘦素等脂类代谢相关物质发生改变,不仅对血浆脂代谢产生影响,对于肾小球及肾小管的结构及功能也会有一定的损伤作用。肾病患者,如肾病综合征、慢性肾衰竭等疾病,多数有肾小球及肾小管间质的损伤,肾脏的脂毒性加重肾单位的破坏。随着人们对于慢性肾脏病认识的逐渐深入,降脂治疗的普遍应用,人们普遍认为改善血浆中脂类的水平,对于肾病的治疗,尤其对于慢性肾衰竭的预防具有重要作用。  相似文献   

19.
Renal hypoxia and dysoxia after reperfusion of the ischemic kidney   总被引:2,自引:0,他引:2  
Ischemia is the most common cause of acute renal failure. Ischemic-induced renal tissue hypoxia is thought to be a major component in the development of acute renal failure in promoting the initial tubular damage. Renal oxygenation originates from a balance between oxygen supply and consumption. Recent investigations have provided new insights into alterations in oxygenation pathways in the ischemic kidney. These findings have identified a central role of microvascular dysfunction related to an imbalance between vasoconstrictors and vasodilators, endothelial damage and endothelium-leukocyte interactions, leading to decreased renal oxygen supply. Reduced microcirculatory oxygen supply may be associated with altered cellular oxygen consumption (dysoxia), because of mitochondrial dysfunction and activity of alternative oxygen-consuming pathways. Alterations in oxygen utilization and/or supply might therefore contribute to the occurrence of organ dysfunction. This view places oxygen pathways' alterations as a potential central player in the pathogenesis of acute kidney injury. Both in regulation of oxygen supply and consumption, nitric oxide seems to play a pivotal role. Furthermore, recent studies suggest that, following acute ischemic renal injury, persistent tissue hypoxia contributes to the development of chronic renal dysfunction. Adaptative mechanisms to renal hypoxia may be ineffective in more severe cases and lead to the development of chronic renal failure following ischemia-reperfusion. This paper is aimed at reviewing the current insights into oxygen transport pathways, from oxygen supply to oxygen consumption in the kidney and from the adaptation mechanisms to renal hypoxia. Their role in the development of ischemia-induced renal damage and ischemic acute renal failure are discussed.  相似文献   

20.
Polycystic kidney growth implies expansion of the vasculature, suggesting that vascular endothelial growth factor (VEGF)-dependent processes play a critical role and that VEGF is a putative therapeutic target. Whether an anti-VEGF antibody improves renal cystic disease has not been determined. We administrated 5 mg/kg B20.4.1, an anti-VEGF-A antibody, or vehicle intraperitoneally twice weekly to 4-wk-old male normal (+/+) and cystic (Cy/+) Han:SPRD rats for 6 wk. Renal function, urinary protein excretion, organ/body weight ratios, cyst volume, tubular epithelial cell (TEC) proliferation, renal VEGF, hypoxia-inducible factor (HIF)-1α and -2α expression, renal histology, and kidney hypoxia visualized by [(18)F]fluoromisonidazole positron emission tomography were assessed. The treated compared with untreated +/+ rats had lower TEC proliferation rates, whereas Cy/+ rats receiving B20.4.1 displayed an increased proximal TEC proliferation rate, causing enhanced cyst and kidney growth. The +/+ and Cy/+ rats receiving B20.4.1 had severe renal failure and extensive glomerular damage. Proteinuria, which was highest in anti-VEGF-treated Cy/+ and lowest in untreated normal littermates, was positively correlated with renal HIF-1α and negatively correlated with VEGF expression. The untreated Cy/+ vs. +/+ rats had higher overall [(18)F]fluoromisonidazole uptake. The +/+ rats receiving B20.4.1 vs. untreated had increased [(18)F]fluoromisonidazole uptake, whereas the uptake was unchanged among treated vs. untreated Cy/+ animals. In conclusion, B20.4.1 caused an exaggerated cystic response of the proximal tubules in cystic rats and severe kidney injury that was associated with low renal VEGF and high HIF-1α levels. Anti-VEGF drug therapy may therefore not be a treatment option for polycystic kidney disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号