首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have shown previously that peripheral lymph node-resident retinoic acid receptor-related orphan receptor γt(+) NK1.1(-) invariant NKT (iNKT) cells produce IL-17A independently of IL-6. In this study, we show that the concomitant presence of IL-1 and IL-23 is crucial to induce a rapid and sustained IL-17A/F and IL-22 response by these cells that requires TCR-CD1d interaction and partly relies on IL-23-mediated upregulation of IL-23R and IL-1R1 expression. We further show that IL-1 and IL-23 produced by pathogen-associated molecular pattern-stimulated dendritic cells induce this response from NK1.1(-) iNKT cells in vitro, involving mainly TLR2/4-signaling pathways. Finally, we found that IL-17A production by these cells occurs very early and transiently in vivo in response to heat-killed bacteria. Overall, our study indicates that peripheral lymph node NK1.1(-) iNKT cells could be a source of innate Th17-related cytokines during bacterial infections and supports the hypothesis that they are able to provide an efficient first line of defense against bacterial invasion.  相似文献   

3.
Dungan LS  Mills KH 《Cytokine》2011,56(1):126-132
The interleukin (IL)-1 cyokine family plays a vital role in inflammatory responses during infection and in autoimmune diseases. The pro-inflammatory cytokines, IL-1β and IL-18 are members of the IL-1 family that require cleavage by caspase-1 in the inflammasome to generate the mature active cytokines. Cells of the innate immune system, including γδ T cells and invariant natural killer T (iNKT) cells respond rapidly to invading pathogens by producing inflammatory cytokines, such as IFN-γ and IL-17. IL-1β or IL-18 in combination with IL-23 can induce IL-17 production by γδ T cells without T cell receptor (TCR) engagement. IL-1β and IL-23 can also synergize to induce IL-17 production by iNKT cells. Furthermore, CD4+ αβ effector memory T cells secrete IL-17 in response to IL-23 in combination with either IL-1β or IL-18, in the absence of any TCR stimulation. The early IL-17 produced by innate cells induces recruitment of neutrophils to the site of infection, stimulates local epithelial cells to secrete anti-microbial proteins, such as lipocalins and calgranulins, induces production of structural proteins important in tight junction stability, and promotes production of matrix metalloproteinases. Caspase-1 processed IL-1 family cytokines therefore play a vital role in the innate immune response and induction of IL-17 from innate immune cells which functions to fight infections and promote autoimmunity.  相似文献   

4.
Numerical and functional defects of invariant natural killer T cells (iNKT) have been documented in human and mouse cancers, resulting in a defect in IFN production in several malignancies. iNKT cells recognize glycolipids presented on CD1d molecules by dendritic and related cells, leading to their activation and thereby regulating immune reactions. Activated iNKT cells cytokine secretion and cytotoxicity can inhibit existing and spontaneous tumor growth, progression, and metastasis. We have identified functional iNKT cell defects in the murine TRAMP prostate cancer model. We found that iNKT cells show the ability to migrate into TRAMP prostate tumors. This infiltration was mediated through CCL2: CCR5 chemokine: receptor interaction. Prostate tumor cells expressing CD1d partially activated iNKT cells, as appreciated by up-regulation of CD25, PD-1 and the IL-12R. However, despite inducing up-regulation of these activation markers and, hence, delivering positive signals, prostate tumor cells inhibited the IL-12-induced STAT4 phosphorylation in a cell-cell contact dependent but CD1d-independent manner. Consequently, tumor cells did not induce secretion of IFNγ by iNKT cells. Blocking the inhibitory Ly49 receptor on iNKT cells in the presence of α-GalCer restored their IFNγ production in vivo and in vitro. However, Ly49 blockade alone was not sufficient. Importantly, this defect could be also be reversed into vigorous secretion of IFNγ by the addition of both IL-12 and the exogenous CD1d ligand alpha-galactosylceramide, but not by IL-12 alone, both in vivo and in vitro. These data underscore the potential to optimize iNKT-based therapeutic approaches.  相似文献   

5.
Invariant CD1d-restricted NKT (iNKT) cells play important roles in generating protective immune responses against infections. In this study, we have investigated the role of human iNKT cells in HSV-1 infection and their interaction with epidermal keratinocytes. These cells express CD1d and are the primary target of the virus. Keratinocytes loaded with α-galactosyl ceramide (α-GalCer) could stimulate IFN-γ production and CD25 upregulation by iNKT cells. However, both α-GalCer-dependent and cytokine-dependent activation of iNKT cells was impaired after coculture with HSV-1-infected cells. Notably, CD1d downregulation was not observed on infected keratinocytes, which were also found to inhibit TCR-independent iNKT cell activation. Further examination of the cytokine profile of iNKT-keratinocyte cocultures showed inhibition of IFN-γ, IL-5, IL-10, IL-13, and IL-17 secretion but upregulation of IL-4 and TNF-α after the infection. Moreover, cell-to-cell contact between infected keratinocytes and iNKT cells was required for the inhibition of activation, as the cell-free supernatants containing virus did not affect activation. Productive infection of iNKT cells was however not required for the inhibitory effect. After coculture with infected cells, iNKT cells were no longer responsive to further stimulation with α-GalCer-loaded CD1d-expressing cells. We found that exposure to HSV-1-infected cells resulted in impaired TCR signaling downstream of ZAP70. Additionally, infected cells upregulated the expression of the negative T cell regulator, galectin-9; however, blocking experiments indicated that the impairment of iNKT cell responses was independent of galectin-9. Thus, interference with activation of human iNKT cells by HSV-1 may represent a novel immunoevasive strategy used by the virus to avoid immune clearance.  相似文献   

6.
Invariant NKT (iNKT) cells are infrequent but important immunomodulatory lymphocytes that exhibit CD1d-restricted reactivity with glycolipid Ags. iNKT cells express a unique T-cell receptor (TCR) composed of an invariant α-chain, paired with a limited range of β-chains. Superantigens (SAgs) are microbial toxins defined by their ability to activate conventional T cells in a TCR β-chain variable domain (Vβ)-specific manner. However, whether iNKT cells are directly activated by bacterial SAgs remains an open question. Herein, we explored the responsiveness of mouse and human iNKT cells to a panel of staphylococcal and streptococcal SAgs and examined the contribution of major histocompatibility complex (MHC) class II and CD1d to these responses. Bacterial SAgs that target mouse Vβ8, such as staphylococcal enterotoxin B (SEB), were able to activate mouse hybridoma and primary hepatic iNKT cells in the presence of mouse APCs expressing human leukocyte antigen (HLA)-DR4. iNKT cell-mediated cytokine secretion in SEB-challenged HLA-DR4-transgenic mice was CD1d-independent and accompanied by a high interferon-γ:interleukin-4 ratio consistent with an in vivo Th1 bias. Furthermore, iNKT cells from SEB-injected HLA-DR4-transgenic mice, and iNKT cells from SEB-treated human PBMCs, showed early activation by intracellular cytokine staining and CD69 expression. Unlike iNKT cell stimulation by α-galactosylceramide, stimulation by SEB did not induce TCR downregulation of either mouse or human iNKT cells. We conclude that Vβ8-targeting bacterial SAgs can activate iNKT cells by utilizing a novel pathway that requires MHC class II interactions, but not CD1d. Therefore, iNKT cells fulfill important effector functions in response to bacterial SAgs and may provide attractive targets in the management of SAg-induced illnesses.  相似文献   

7.
《Cytotherapy》2020,22(5):276-290
Background aimsKey obstacles in human iNKT cell translational research and immunotherapy include the lack of robust protocols for dependable expansion of human iNKT cells and the paucity of data on phenotypes in post-expanded cells.MethodsWe delineate expansion methods using interleukin (IL)-2, IL-7 and allogeneic feeder cells and anti-CD2/CD3/CD28 stimulation by which to dependably augment Th2 polarization and direct cytotoxicity of human peripheral blood CD3+Vα24+Vβ11+ iNKT cells.ResultsGene and protein expression profiling demonstrated augmented Th2 cytokine secretion (IL-4, IL-5, IL-13) in expanded iNKT cells stimulated with anti-CD2/CD3/CD28 antibodies. Cytotoxic effector molecules including granzyme B were increased in expanded iNKT cells after CD2/CD3/CD28 stimulation. Direct cytotoxicity assays using unstimulated expanded iNKT cell effectors revealed α-galactosyl ceramide (α-GalCer)-dependent killing of the T-ALL cell line Jurkat. Moreover, CD2/CD3/CD28 stimulation of expanded iNKT cells augmented their (α-GalCer-independent) killing of Jurkat cells. Co-culture of expanded iNKT cells with stimulated responder cells confirmed contact-dependent inhibition of activated CD4+ and CD8+ responder T cells.DiscussionThese data establish a robust protocol to expand and novel pathways to enhance Th2 cytokine secretion and direct cytotoxicity in human iNKT cells, findings with direct implications for autoimmunity, vaccine augmentation and anti-infective immunity, cancer immunotherapy and transplantation.  相似文献   

8.
CD1d-restricted invariant natural killer T (iNKT) cells have diverse immune stimulatory/regulatory activities through their ability to release cytokines and to kill or transactivate other cells. Activation of iNKT cells can protect against multiple diseases in mice but clinical trials in humans have had limited impact. Clinical studies to date have targeted polyclonal mixtures of iNKT cells and we proposed that their subset compositions will influence therapeutic outcomes. We sorted and expanded iNKT cells from healthy donors and compared the phenotypes, cytotoxic activities and cytokine profiles of the CD4(+), CD8α(+) and CD4(-)CD8α(-) double-negative (DN) subsets. CD4(+) iNKT cells expanded more readily than CD8α(+) and DN iNKT cells upon mitogen stimulation. CD8α(+) and DN iNKT cells most frequently expressed CD56, CD161 and NKG2D and most potently killed CD1d(+) cell lines and primary leukemia cells. All iNKT subsets released Th1 (IFN-γ and TNF-α) and Th2 (IL-4, IL-5 and IL-13) cytokines. Relative amounts followed a CD8α>DN>CD4 pattern for Th1 and CD4>DN>CD8α for Th2. All iNKT subsets could simultaneously produce IFN-γ and IL-4, but single-positivity for IFN-γ or IL-4 was strikingly rare in CD4(+) and CD8α(+) fractions, respectively. Only CD4(+) iNKT cells produced IL-9 and IL-10; DN cells released IL-17; and none produced IL-22. All iNKT subsets upregulated CD40L upon glycolipid stimulation and induced IL-10 and IL-12 secretion by dendritic cells. Thus, subset composition of iNKT cells is a major determinant of function. Use of enriched CD8α(+), DN or CD4(+) iNKT cells may optimally harness the immunoregulatory properties of iNKT cells for treatment of disease.  相似文献   

9.
10.
Va14Ja18 natural T (iNKT) cells are innate, immunoregulatory lymphocytes that recognize CD1d-restricted lipid Ags such as alpha-galactosylceramide (alpha GalCer). The immunoregulatory functions of iNKT cells are dependent upon either IFN-gamma or IL-4 production by these cells. We hypothesized that alpha GalCer presentation by different CD1d-positive cell types elicits distinct iNKT cell functions. In this study we report that dendritic cells (DC) play a critical role in alpha GalCer-mediated activation of iNKT cells and subsequent transactivation of NK cells. Remarkably, B lymphocytes suppress DC-mediated iNKT and NK cell activation. Nevertheless, alpha GalCer presentation by B cells elicits low IL-4 responses from iNKT cells. This finding is particularly interesting because we demonstrate that NOD DC are defective in eliciting iNKT cell function, but their B cells preferentially activate this T cell subset to secrete low levels of IL-4. Thus, the differential immune outcome based on the type of APC that displays glycolipid Ags in vivo has implications for the design of therapies that harness the immunoregulatory functions of iNKT cells.  相似文献   

11.
12.
IFN-β-1b is a first-line immunomodulatory therapy for relapsing-remitting multiple sclerosis (RR MS). However, its effects on B cells have not been characterized. In vitro studies of B cells derived from RR MS patients revealed that IFN-β-1b decreases B cells' stimulatory capacity, as detected by inhibition of the Ag-specific T cell proliferative response upon Ag presentation by IFN-β-1b-treated B cells. Our study has identified that IFN-β-1b inhibited B cells' stimulatory capacity in RR MS patients and healthy controls through the suppression of CD40 and CD80 expression, whereas the MHC class I and II expression was not changed. IFN-β-1b in vitro treatment inhibited B cell secretion of IL-1β and IL-23 and induced IL-12 and IL-27. Supernatants transferred from IFN-β-1b-treated B cells inhibited Th17 cell differentiation, as they suppressed gene expression of the retinoic acid-related orphan nuclear hormone receptor C and IL-17A and secretion of IL-17A. In addition, IFN-β-1b induced B cells' IL-10 secretion, which may mediate their regulatory effect. Studies of B cells derived from RR MS patients treated with recombinant s.c. injected IFN-β-1b revealed that they induced a significantly lower proliferative response in allogenic MLR than the B cells from untreated patients. Further confirming the IFN-β-1b in vitro-induced changes in B cell cytokine secretion, B cells derived from the IFN-β-1b-treated patients secreted significantly lower levels of IL-1β and IL-23 and higher levels of IL-12 and IL-27 in comparison with the B cells derived from untreated patients. We conclude that IFN-β-1b exerts its therapeutic effects in part by targeting B cells' functions that contribute to the autoimmune pathogenesis of RR MS.  相似文献   

13.
CD1d-restricted invariant NKT (iNKT) cells play important regulatory roles in various immune responses, including antitumor immune responses. Previous studies have demonstrated quantitative and qualitative defects in iNKT cells of cancer patients, and these defects are clinically relevant as they are associated with poor prognosis. In this study we demonstrate that defects in the iNKT cell population can, at least in part, be attributed to defective interactions between iNKT cells and CD1d-expressing circulating myeloid dendritic cells (mDC), as mDC of patients with advanced melanoma and renal cell cancer reduced the activation and Th1 cytokine production of healthy donor-derived iNKT cells. Interestingly, this reduced activation of iNKT cells was restricted to patients with low circulating iNKT cell numbers and could be reversed by IL-12 and in part by the neutralization of TGF-beta, but it was further reduced by the neutralization of IL-10 in vitro. Additional experiments revealed discordant roles for TGF-beta and IL-10 on human iNKT cells, because TGF-beta suppressed iNKT cell activation and proliferation and IFN-gamma production while IL-10 was identified as a cytokine involved in stimulating the activation and expansion of iNKT cells that could subsequently suppress NK cell and T cell responses.  相似文献   

14.
This protocol describes methods to identify, purify and culture CD1d restricted invariant natural killer T (iNKT) cells from mouse tissue or human blood samples. The methods for identification and purification of iNKT cells are based on the interaction between iNKT cell receptor and its ligand. The iNKT cell receptor is composed of the invariant V alpha 14 J alpha 18/V beta 8.2 in mice or V alpha 24 J alpha 18/V beta 11 in humans and is expressed only on iNKT cells but not on conventional T cells. The iNKT cell antigen receptor in both species recognizes alpha-galactosylceramide (alpha-GalCer) presented by the MHC class I-like CD1d. Thus, alpha-GalCer-loaded CD1d dimer can be used for analysis and purification by fluorescence-activated cell sorting (FACS). Isolation of 1 x 10(6) purified iNKT cells from mouse thymus, spleen or liver requires 5-6 mice and takes 1-2 h for mononuclear cell preparation from mouse tissues, 1.5 h for enrichment by magnetic beads and 4 h for detection and purification of the iNKT cells by FACS. In the case of isolation of human peripheral blood mononuclear cells (PBMCs) from whole blood, it takes 2 h and requires 5 ml of blood to obtain 5 x 10(6) PBMCs, which contain 500-25,000 iNKT cells.  相似文献   

15.
The nervous system influences immune responses through the release of neural factors such as neuropeptides. Among them, the tachykinin substance P (SP) signals via the neurokinin 1 receptor (NK-1R), which is expressed by various immune cells. We thereby analyzed in this paper whether tachykinins may participate in human CD4(+) Th cell polarization. We report that SP and hemokinin-1 (HK-1) upregulate IL-17A and IFN-γ production by human memory CD4(+) T cells without affecting IL-4 and IL-10 production. SP and HK-1 switch non-Th17-committed CD4(+) memory T cells into bona fide Th17 cells and Th1/Th17 cells. In contrast, SP and HK-1 do not modulate the polarization of naive CD4(+) T cells. SP- and HK-1-induced Th17 cell generation is mediated through NK-1R and requires the presence of monocytes. SP and HK-1 trigger IL-1β, IL-6, and TNF-α production, upregulate IL-23 production, and enhance TNF-like 1A expression on monocyte surface. Neutralization experiments demonstrated that IL-1β, IL-23, and TNF-like 1A are involved in the SP- and HK-1-induced Th17 cell. The other members of the tachykinin family, neurokinins A and B, have no effect on the differentiation of naive and memory T cells. These results thereby show that SP and HK-1 are novel Th17 cell-inducing factors that may act locally on memory T cells to amplify inflammatory responses.  相似文献   

16.
Regarding discrepancies that exist among different studies which have tried to clarify critical factors in human Th17 cell differentiation, the aim of this study was to identify the best condition for human Th17 differentiation and to clarify the possible role of TGF-β in differentiation of these cells. Naïve CD4+ T cells were isolated from cord blood samples and cultured either in X-VIVO 15 serum-free medium or RPMI 1640 containing 10% FBS. Purified cells were treated with different combinations of polarizing cytokines (TGF-β, IL-1β, IL-6, IL-23 and IL-21) followed by analysis of the expression of characteristic genes and their relevant cytokines by real-time quantitative RT-PCR and ELISA method, respectively. Our data indicate that a combination of TGF-β plus IL-6 and IL-23 cytokines in X-VIVO 15 serum-free medium could be applied as the best condition for developing human Th17 cells in compare with other studied cytokine treatments. It is shown that TGF-β could be considered as a positive regulator for human Th17 cell differentiation only if applied in average concentrations. Interestingly, polarizing treatments in absence of TGF-β, induced double-secreting Th17 cells which co-express IL-17 and IFN-γ whereas polarization in presence of TGF-β-induced single-secreting (only IL-17 expressing) Th17 cells.  相似文献   

17.
Invariant natural killer T (iNKT) cells are non-conventional lipid-reactive αβ T lymphocytes that play a key role in host responses during viral infections, in particular through the swift production of cytokines. Their beneficial role during experimental influenza A virus (IAV) infection has recently been proposed, although the mechanisms involved remain elusive. Here we show that during in vivo IAV infection, mouse pulmonary iNKT cells produce IFN-γ and IL-22, a Th17-related cytokine critical in mucosal immunity. Although permissive to viral replication, IL-22 production by iNKT cells is not due to IAV infection per se of these cells but is indirectly mediated by IAV-infected dendritic cells (DCs). We show that activation of the viral RNA sensors TLR7 and RIG-I in DCs is important for triggering IL-22 secretion by iNKT cells, whereas the NOD-like receptors NOD2 and NLRP3 are dispensable. Invariant NKT cells respond to IL-1β and IL-23 provided by infected DCs independently of the CD1d molecule to release IL-22. In vitro, IL-22 protects IAV-infected airway epithelial cells against mortality but has no role on viral replication. Finally, during early IAV infection, IL-22 plays a positive role in the control of lung epithelial damages. Overall, IAV infection of DCs activates iNKT cells, providing a rapid source of IL-22 that might be beneficial to preserve the lung epithelium integrity.  相似文献   

18.
Espinosa V  Rivera A 《Cytokine》2012,58(1):100-106
CD4 T cells play important and non-redundant roles in protection against infection with diverse fungi. Distinct CD4 T cell subsets can mediate protection against fungal disease where Th1 and Th17 CD4 T cell subsets have been found to promote fungal clearance and protective immunity against diverse fungal pathogens. The differentiation of na?ve CD4 T cells into Th1 or Th17 cells is crucially controlled by their interaction with dendritic cells and instructed by cytokines. IL-12 and IFN-γ promote Th1 differentiation while TGF-β, IL-6, IL-1, IL-21 and IL-23 promote Th17 differentiation and maintenance. The production of these cytokines by DCs is in turn regulated by innate receptors triggered in response to fungal infection. In this review we will discuss the contributions of cytokines found to influence fungus-specific CD4 T cell differentiation and their role in defense against fungal disease. We will also highlight the contributions of innate receptors involved in recognition of fungi and how they shape cytokine secretion and CD4 T cell differentiation.  相似文献   

19.
The invariant NKT (iNKT) cell lineage contains CD4(+) and CD4(-) subsets. The mechanisms that control such subset differentiation and iNKT cell maturation in general have not been fully understood. RasGRP1, a guanine nucleotide exchange factor for TCR-induced activation of the Ras-ERK1/2 pathway, is critical for conventional αβ T cell development but dispensable for generating regulatory T cells. Its role in iNKT cells has been unknown. In this study, we report severe decreases of iNKT cells in RasGRP1(-/-) mice through cell intrinsic mechanisms. In the remaining iNKT cells in RasGRP1(-/-) mice, there is a selective absence of the CD4(+) subset. Furthermore, RasGRP1(-/-) iNKT cells are defective in TCR-induced proliferation in vitro. These observations establish that RasGRP1 is not only important for early iNKT cell development but also for the generation/maintenance of the CD4(+) iNKT cells. Our data provide genetic evidence that the CD4(+) and CD4(-) iNKT cells are distinct sublineages with differential signaling requirements for their development.  相似文献   

20.
CBA/J mice infected with the helminth Schistosoma mansoni develop severe CD4 T cell-mediated hepatic granulomatous inflammation against parasite eggs associated with a robust Th17 cell response. We investigated the requisites for Th17 cell development using novel CD4 T cells expressing a transgenic TCR specific for the major Sm-p40 egg Ag, which produce IL-17 when stimulated with live schistosome eggs. Neutralization of IL-23 or blockade of the IL-1 receptor, but not IL-6 neutralization, abrogated egg-induced IL-17 secretion by transgenic T cells, whereas exogenous IL-23 or IL-1β reconstituted their ability to produce IL-17 when stimulated by syngeneic IL-12p40-deficient dendritic cells. Kinetic analysis demonstrated that IL-17 production was initiated by IL-23 and amplified by IL-1β. Significantly, schistosome-infected IL-12p40-deficient or IL-1R antagonist-treated CBA/J mice developed markedly reduced hepatic immunopathology with a dampened egg Ag-specific IL-17 response. These results demonstrate that the IL-23-IL-1-IL-17 axis has a central role in the development of severe schistosome egg-induced immunopathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号