首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Molecular Biology Reports - MicroRNAs (miRNAs) are important gene regulators whose dysregulations can be involved in tumorigenesis. β-catenin, the main agent in the Wnt/β-catenin pathway,...  相似文献   

3.
4.
5.
6.
Expression of estrogen receptor β (ERβ) has been described to reduce growth of cancer cell lines derived from hormone-dependent tumors, like breast cancer. In this study we tested to what extent two ERβ agonists, androgen derivative 3β-Adiol and flavonoid Liquiritigenin, would affect growth and gene expression of different ERβ-positive human breast cancer cell lines. Under standard cell culture conditions, we observed 3β-Adiol to inhibit growth of MCF-7 cells in a dose-dependent manner, whereas growth of BT-474 and MCF-10A cells was suppressed by the maximum concentration (100 nM) only. When treated in serum-free medium, all cell lines except of MDA-MB-231 were responsive to 1 nM 3β-Adiol, and ZR75-1 cells exhibited a dose-dependent antiproliferative response. Providing putative mechanisms underlying the observed growth-inhibitory effect, expression of Ki-67 or cyclins A2 and B1 was downregulated after 3β-Adiol treatment in all responsive lines. In contrast, treatment with lower doses of Liquiritigenin did not affect growth. In MCF-7 cells, the highest dose of this flavonoid exerted proliferative effects accompanied by increased expression of cyclin B1, PR and PS2, indicating unspecific activation of ERα. In conclusion, the ERβ agonists tested exerted distinct concentration-dependent and cell line-specific effects on growth and gene expression. The observed inhibitory effects of 3β-Adiol on breast cancer cell growth encourage further studies on the potential of this and other ERβ agonists as targeted drugs for breast cancer therapy.  相似文献   

7.
8.
9.
10.
11.
12.
Kang YH  Ji NY  Han SR  Lee CI  Kim JW  Yeom YI  Kim YH  Chun HK  Kim JW  Chung JW  Ahn DK  Lee HG  Song EY 《Cellular signalling》2012,24(10):1940-1949
In our previous study, we reported that endothelial cell specific molecule-1 (ESM-1) was increased in tissue and serum from colorectal cancer patients and suggested that ESM-1 can be used as a potential serum marker for early detection of colorectal cancer. The aim of this study was to evaluate the role of ESM-1 as an intracellular molecule in colorectal cancer. ESM-1 expression was knocked down by small interfering RNA (siRNA) in colorectal cancer cells. Expression of ESM-1 siRNA decreased cell survival through the Akt-dependent inhibition of NF-κB/IκB pathway and an interconnected reduction in phospho-Akt, -p38, -ERK1, -RSK1, -GSK-3α/β and -HSP27, as determined by a phospho-MAPK array. ESM-1 silencing induced G(1) phase cell cycle arrest by induction of PTEN, resulting in the inhibition of cyclin D1 and inhibited cell migration and invasion of COLO205 cells. Consistently, ESM-1 overexpression in HCT-116 cells enhanced cell proliferation through the Akt-dependent activation of NF-κB pathway. In addition, ESM-1 interacted with NF-κB and activated NF-κB promoter. This study demonstrates that ESM-1 is involved in cell survival, cell cycle progression, migration, invasion and EMT during tumor invasion in colorectal cancer. Based on our results, ESM-1 may be a useful therapeutic target for colorectal cancer.  相似文献   

13.
14.
Phospholipase C-γ1 (PLC-γ1), a tyrosine kinase substrate, has been implicated in the pathway for the epidermal growth factor receptor (EGFR)-induced cell migration. However, the underlying mechanism by which PLC-γ1 mediates EGFR-induced cell migration remains elusive. In the present study, we sought to determine whether the lipase activity of PLC-γ1 is required for EGFR-induced cell migration. We found that overexpression of PLC-γ1 in squamous cell carcinoma SCC4 cells markedly enhanced EGF-induced PLC-γ1 activation, intracellular calcium rise, and cell migration. This enhancement was abolished by mutational inactivation of the catalytic domain of PLC-γ1. Inhibition of the downstream signaling processes mediated by the activity of phospholipase C (PLC) using IP3 receptor inhibitor or intracellular calcium chelator blocked EGF-induced cell migration. These data indicate that EGF-induced cell migration is mediated by the lipase domain of PLC-γ1 and the subsequent IP3 generation and intracellular calcium mobilization.  相似文献   

15.
16.
TAK-778 has been shown to stimulate osteogenesis both in vitro and in vivo. However, the mechanism by which TAK-778 exerts its effects is still unclear. There is evidence that TAK-778 acts via estrogen-receptor (ER)-mediated signaling; this study therefore aimed to investigate the roles that ERα, ERβ, and membrane ER play in the osteogenic effect of TAK-778. To this end, human bone marrow mesenchymal cells were cultured with TAK-778 in the presence of either ICI182,780 (ERα and ERβ antagonist) or MPP (ERα antagonist) or PD98059 (an extracellular-regulated kinase inhibitor that acts on the membrane ER pathway). The following parameters were evaluated: cell proliferation, collagen content, alkaline phosphatase (ALP) activity and bone-like formation. Data were compared using ANOVA. The effect of TAK-778 on expression of ERα and ERβ was investigated by immunolabeling. In order to investigate whether TAK-778 binds to ER, an ER binding assay was performed. Both immunolabeling and binding assays were conducted using cells from human alveolar bone. The osteogenic effect of TAK-778 was inhibited by ICI182,780 and MPP; however, it was not affected by PD98059. The expression of both ERα and ERβ was not affected by TAK-778. The competition curve obtained from the binding assay using TAK-778 showed maximal displacement when 10−5 M TAK-778 was used. This study's results show that TAK-778 enhances osteoblast differentiation through an ERα-dependent pathway by binding to this receptor and not by increasing the expression of ER. (Mol Cell Biochem xxx: 1–9, 2005)  相似文献   

17.
In the present study, we report the effect and molecular mechanism of Ligularia fischeri (LF) on proliferation and migration in human lung cancer cells. LF-mediated inhibition of cell proliferation in p53 wild-type A549 and p53-deficient H1299 cells is accompanied by reduced expression of cell cycle-related proteins such as cyclin-dependent kinases and cyclins, resulting in pRb hypophosphorylation and G1 phase cell cycle arrest. In contrast, LF inhibits cell migration in A549 cells, but not in H1299 cells. These regulatory effects of LF on cell proliferation and migration are associated with inactivation of mitogenic signaling pathways such as ERK, Akt and p70S6K, and down-regulation of epidermal growth factor receptor and integrin β1 expression. Collectively, these findings suggest further development and evaluation of LF for the prevention and treatment of lung cancer with mutated p53 as well as wild-type p53.  相似文献   

18.
19.
Yuan G  Wang C  Ma C  Chen N  Tian Q  Zhang T  Fu W 《PloS one》2012,7(3):e34004
The Wnt/β-catenin signaling pathway plays important roles in the progression of colon cancer. DACT1 has been identified as a modulator of Wnt signaling through its interaction with Dishevelled (Dvl), a central mediator of both the canonical and noncanonical Wnt pathways. However, the functions of DACT1 in the WNT/β-catenin signaling pathway remain unclear. Here, we present evidence that DACT1 is an important positive regulator in colon cancer through regulating the stability and sublocation of β-catenin. We have shown that DACT1 promotes cancer cell proliferation in vitro and tumor growth in vivo and enhances the migratory and invasive potential of colon cancer cells. Furthermore, the higher expression of DACT1 not only increases the nuclear and cytoplasmic fractions of β-catenin, but also increases its membrane-associated fraction. The overexpression of DACT1 leads to the increased accumulation of nonphosphorylated β-catenin in the cytoplasm and particularly in the nuclei. We have demonstrated that DACT1 interacts with GSK-3β and β-catenin. DACT1 stabilizes β-catenin via DACT1-induced effects on GSK-3β and directly interacts with β-catenin proteins. The level of phosphorylated GSK-3β at Ser9 is significantly increased following the elevated expression of DACT1. DACT1 mediates the subcellular localization of β-catenin via increasing the level of phosphorylated GSK-3β at Ser9 to inhibit the activity of GSK-3β. Taken together, our study identifies DACT1 as an important positive regulator in colon cancer and suggests a potential strategy for the therapeutic control of the β-catenin-dependent pathway.  相似文献   

20.
ABSTRACT

KHC-4 is a 2-phenyl-4-quinolone analogue that exhibits anticancer activity. Aberrant activation of β-catenin signaling contributes to prostate cancer development and progression. Therefore, targeting β-catenin expression could be a useful approach to treating prostate cancer. We found that KHC-4 can inhibit β-catenin expression and its signaling pathway in DU145 prostate cancer cells. Treatment with KHC-4 decreased total β-catenin expression and concomitantly decreased β-catenin levels in both the cytoplasm and nucleus of cells. KHC-4 treatment also inhibited β-catenin expression and that of its target proteins, PI3K, AKT, GSK3β and TBX3. We monitored the stability of β-catenin with the proteasomal inhibitor, MG132, in DU145 cells and found that MG132 reversed KHC-4-induced proteasomal β-catenin degradation. We verified CDK1/β-catenin expression in KHC-4 treated DU145 cells. We found that roscovitine treatment reversed cell proliferation by arresting the cell cycle at the G2/M phase and β-catenin expression caused by KHC-4 treatment. We suggest that KHC-4 inhibits β-catenin signaling in DU145 prostate cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号