首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photosynthesis is currently a focus for crop improvement. The majority of this work has taken place and been assessed in leaves, and limited consideration has been given to the contribution that other green tissues make to whole‐plant carbon assimilation. The major focus of this review is to evaluate the impact of non‐foliar photosynthesis on carbon‐use efficiency and total assimilation. Here we appraise and summarize past and current literature on the substantial contribution of different photosynthetically active organs and tissues to productivity in a variety of different plant types, with an emphasis on fruit and cereal crops. Previous studies provide evidence that non‐leaf photosynthesis could be an unexploited potential target for crop improvement. We also briefly examine the role of stomata in non‐foliar tissues, gas exchange, maintenance of optimal temperatures and thus photosynthesis. In the final section, we discuss possible opportunities to manipulate these processes and provide evidence that Triticum aestivum (wheat) plants genetically manipulated to increase leaf photosynthesis also displayed higher rates of ear assimilation, which translated to increased grain yield. By understanding these processes, we can start to provide insights into manipulating non‐foliar photosynthesis and stomatal behaviour to identify novel targets for exploitation in continuing breeding programmes.  相似文献   

2.
The accepted food yeast Saccharomyces fragilis was grown in batch and chemostat culture on coconut water and on a simulated coconut-water medium containing glucose, fructose, sucrose and sorbitol, to provide kinetic data for a feasibility study of microbial protein production. Analyses of growth on individual and mixed carbon substrates were made to determine sugar assimilation patterns in batch and chemostat cultures on coconut water. Growth on the polyol produced a much reduced specific growth rate, assimilation rate, growth yield and productivity compared to growth on the sugars. In mixed substrate fermentations a sequential utilization of the carbohydrates occurred. Both the monosaccharides repressed invertase synthesis and all three sugars repressed sorbitol assimilation. Complete carbon assimilation was only obtained by prolonged batch fermentation or in chemostat cultures at low dilution rates (<0.10 h-1). Supplementation of coconut water with biotin and nicotinic acid increased biomass yields in chemostat cultures.  相似文献   

3.
The modulatory effect of opera was investigated on the physiological and morphological aspects in soybean thriving in water stress environment. The data procured from current investigation indicated that water stress significantly declined the plant growth, leaf area in addition to photosynthetic efficiency, nitrate reductase activity and crop yield at various stages of growth such as vegetative (VS), flowering (FS) and pod filling stage (PFS). However, foliar application of opera (0.15%) was effective to enhance the the leaf area (42%), rate of photosynthesis (194%), and nitrate reductase activity (68%) at FS stage while the maximum enhancement in biomass accumulation (92%) and yield (119%) was observed at PFS stage as compared to their control plants. The opera is applied as foliar spray in field experiments to augment the assimilation of nitrogen and carbon in soybean which contributes to increased crop development and productivity under water stress conditions.  相似文献   

4.
Increases in growth at elevated [CO2] may be constrained by a plant's ability to assimilate the nutrients needed for new tissue in sufficient quantity to match the increase in carbon fixation and/or the ability to transport those nutrients and carbon in sufficient quantity to growing organs and tissues. Analysis of metabolites provides an indication of shifts in carbon and nitrogen partitioning due to rising atmospheric [CO2] and can help identify where bottlenecks in carbon utilization occur. In this study, the carbon and nitrogen balance was investigated in growing and fully expanded soybean leaves exposed to elevated [CO2] in a free air CO2 enrichment experiment. Diurnal photosynthesis and diurnal profiles of carbon and nitrogen metabolites were measured during two different crop growth stages. Diurnal carbon gain was increased by c. 20% in elevated [CO2] in fully expanded leaves, which led to significant increases in leaf hexose, sucrose, and starch contents. However, there was no detectable difference in nitrogen-rich amino acids and ureides in mature leaves. By contrast to mature leaves, developing leaves had high concentrations of ureides and amino acids relative to low concentrations of carbohydrates. Developing leaves at elevated [CO2] had smaller pools of ureides compared with developing leaves at ambient [CO2], which suggests N assimilation in young leaves was improved by elevated [CO2]. This work shows that elevated [CO2] alters the balance of carbon and nitrogen pools in both mature and growing soybean leaves, which could have down-stream impacts on growth and productivity.  相似文献   

5.
Leaf area partitioning as an important factor in growth   总被引:13,自引:2,他引:13       下载免费PDF全文
Despite continuing efforts to correlate unit area rates of photosynthesis of crop varieties with growth rates, there has been little or no success. It is reasonable to assume that partitioning of photosynthate into new leaf area is an important component of growth. Accordingly, an expression was developed to measure leaf area partitioning. Using growth analysis techniques, relative growth rates were compared to net assimilation rates, partitioning of daily weight gain into new leaf area, and partitioning of daily weight gain into new leaf weight of nine species grown in growth chambers under three temperature regimes. Day/night temperatures of 21/10, 32/21, and 38/27 C caused large differences in relative growth rates. Relative growth rates were closely correlated with leaf area partitioning in seven of the nine species, but were inversely correlated with leaf weight partitioning for six of the nine species. Relative growth rates were poorly correlated with net assimilation rates for five of the nine species. The product of net assimilation rate times leaf area partitioning is shown to be equal to the relative leaf area expansion rate.  相似文献   

6.
We conducted ecosystem carbon and water vapour exchange studies in an old‐growth Pinus ponderosa forest in the Pacific North‐west region of the United States. The canopy is heterogeneous, with tall multiaged trees and an open, clumped canopy with low leaf area. Carbon assimilation can occur throughout relatively mild winters, although night frosts can temporarily halt the process and physiological factors limit its efficiency. In contrast, carbon assimilation is often limited in the ‘growing season’ by stomatal closure associated with high evaporative demand (D) and soil water deficits. All of these factors present a challenge to effectively modelling ecosystem processes. Our objective was to generate an understanding of the controls on ecosystem processes across seasonal and annual cycles from a combination of fine‐scale process modelling, ecophysiological measurements, and carbon and water vapour fluxes measured by the eddy covariance method. Flux measurements showed that 50% and 70% of the annual carbon uptake occurred outside the ‘growing season’ (defined as bud break to senescence, ~ days 125–275) in 1996 and 1997. On a daily basis in summer, net ecosystem productivity (NEP) was low when D and soil water deficits were large. Whole ecosystem water vapour fluxes (LE) increased from spring to summer (1.0–1.9 mm d?1) as conducting leaf area increased by 30% and as evaporative demand increased, while evaporation from the soil surface became a smaller portion of total LE as soil water deficits increased. The models underestimated soil evaporation, particularly following rain. In the SPA model, varying the temperature optimum for photosynthesis seasonally resulted in overestimation of carbon uptake in winter and spring, showing that in coniferous forests, assumptions about temperature optima are clearly important. Daily estimates of soil surface CO2 flux from measurements and site meteorological data demonstrated that modelling of soil CO2 flux based on an Arrhenius‐type equation in CANPOND overestimated CO2 respired from the soil during drought and when temperatures were low.  相似文献   

7.
The rate of N uptake of crops is highly variable during crop development and between years and sites. However, under ample soil N availability, crop N accumulation is highly related to crop growth rate and to biomass accumulation. Critical N concentration has been defined as the minimum N concentration which allows maximum growth rate. Critical N concentration declines during crop growth. The relationship between critical N concentration and biomass accumulation over the growth period of a crop is broadly similar within major C(3) and C(4) cultivated species. Therefore, the critical N concentration concept is widely used in agronomy as the basis of the diagnosis of crop N status, and allows discrimination between situations of sub-optimal and supra-optimal N supply. The relationship between N and biomass accumulation in crops, relies on the interregulation of multiple crop physiological processes. Among these processes, N uptake, crop C assimilation and thus growth rate, and C and N allocation between organs and between plants, play a particular role. Under sub-optimal N supply, N uptake of the crop depends on soil mineral N availability and distribution, and on root distribution. Under ample N supply, N uptake largely depends on growth rate via internal plant regulation. Carbon assimilation of the crop is related to crop N through the distribution of N between mature leaves with consequences for leaf and canopy photosynthesis. However, although less commonly emphasized, carbon assimilation of the crop also depends on crop N through leaf area development. Therefore, crop growth rate fundamentally relies on the balance of N allocation between growing and mature leaves. Nitrogen uptake and distribution also depends on C allocation between organs and N composition of these organs. Within shoots, allocation of C to stems generally increases in relation to C allocation to the leaves over the crop growth period. Allocation of C and N between shoots and roots also changes to a large extent in relation to soil N and/or crop N. These alterations in C and N allocation between plant organs have implications, together with soil availability and carbon assimilation, on N uptake and distribution in crops. Therefore, N uptake and distribution in plants and crops involves many aspects of growth and development. Regulation of nitrogen assimilation needs to be considered in the context of these interregulatory processes.  相似文献   

8.
Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the mitochondrial malate dehydrogenase gene in the antisense orientation and exhibiting reduced activity of this isoform of malate dehydrogenase show enhanced photosynthetic activity and aerial growth under atmospheric conditions (360 ppm CO2). In comparison to wild-type plants, carbon dioxide assimilation rates and total plant dry matter were up to 11% and 19% enhanced in the transgenics, when assessed on a whole-plant basis. Accumulation of carbohydrates and redox-related compounds such as ascorbate was also markedly elevated in the transgenics. Also increased in the transgenic plants was the capacity to use L-galactono-lactone, the terminal precursor of ascorbate biosynthesis, as a respiratory substrate. Experiments in which ascorbate was fed to isolated leaf discs also resulted in increased rates of photosynthesis providing strong indication for an ascorbate-mediated link between the energy-generating processes of respiration and photosynthesis. This report thus shows that the repression of this mitochondrially localized enzyme improves both carbon assimilation and aerial growth in a crop species.  相似文献   

9.
Carbon cycling processes in ecosystems are generally believed to be well understood. Carbon, hydrogen, oxygen and other essential elements are chemically converted from inorganic to organic compounds primarily in the process of photosynthesis. Secondary metabolic processes cycle carbon in and among organisms and carbon is ultimately released back to the environment as CO2 by respiratory processes. Unfortunately, our understanding of this cycle was determined under the assumption that the primary inorganic form of C (CO2 in the atmosphere) was relatively constant. With the emerging concensus that atmospheric carbon concentration is increasing, we must now reassess our understanding of the carbon cycle. How will plants, animals and decomposers respond to a doubling of carbon supply? Will biological productivity be accelerated? If plant productivity increases will a predictable percentage of the increase be accumulated as increased standing crop? Or, is it possible that doubling the availability of CO2 will increase metabolic activity at all trophic levels resulting in no net increase in system standing crop? The purpose of this paper is to review evidence for physiological and growth responses of plants to carbon dioxide enhancement. Essentially no research has been completed on the ecological aspects of these questions. From this review, I conclude that accurate predictions of future ecosystem responses to increasing atmospheric carbon dioxide concentration are not possible without additional understanding of physiological and ecological mechanisms.  相似文献   

10.
Ewert F 《Annals of botany》2004,93(6):619-627
BACKGROUND AND AIMS: The problem of increasing CO(2) concentration [CO(2)] and associated climate change has generated much interest in modelling effects of [CO(2)] on plants. While variation in growth and productivity is closely related to the amount of intercepted radiation, largely determined by leaf area index (LAI), effects of elevated [CO(2)] on growth are primarily via stimulation of leaf photosynthesis. Variability in LAI depends on climatic and growing conditions including [CO(2)] concentration and can be high, as is known for agricultural crops which are specifically emphasized in this report. However, modelling photosynthesis has received much attention and photosynthesis is often represented inadequately detailed in plant productivity models. Less emphasis has been placed on the modelling of leaf area dynamics, and relationships between plant growth, elevated [CO(2)] and LAI are not well understood. This Botanical Briefing aims at clarifying the relative importance of LAI for canopy assimilation and growth in biomass under conditions of rising [CO(2)] and discusses related implications for process-based modelling. MODEL: A simulation exercise performed for a wheat crop demonstrates recent experimental findings about canopy assimilation as affected by LAI and elevation of [CO(2)]. While canopy assimilation largely increases with LAI below canopy light saturation, effects on canopy assimilation of [CO(2)] elevation are less pronounced and tend to decline as LAI increases. Results from selected model-testing studies indicate that simulation of LAI is often critical and forms an important source of uncertainty in plant productivity models, particularly under conditions of limited resource supply. CONCLUSIONS: Progress in estimating plant growth and productivity under rising [CO(2)] is unlikely to be achieved without improving the modelling of LAI. This will depend on better understanding of the processes of substrate allocation, leaf area development and senescence, and the role of LAI in controlling plant adaptation to environmental changes.  相似文献   

11.
Large‐scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar‐induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007–2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment‐2 satellite, benchmarked with county‐level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF‐based approach accounting for photosynthetic pathways (i.e. C3 and C4 crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon‐use‐efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change.  相似文献   

12.
In this article, we discuss the ways in which our understanding of the controls of nitrogen remobilisation in model species and crop plants have been increased through classical physiological studies and the use of transgenic plants or mutants with modified capacities for nitrogen or carbon assimilation and recycling. An improved understanding of the transition between nitrogen assimilation and nitrogen recycling will be vital, if improvements in crop nitrogen use efficiency are to reduce the need for excessive input of fertilisers and improve or stabilise yield. In this review, we present an overall view of past work and more recent studies on this topic, using different plants systems and models depicting the biochemical and molecular events occurring during the transition between sink leaves and source leaves. These models may provide a way to identify the nature of the metabolic or developmental signals triggering in a coordinate manner nitrogen and carbon recycling during leaf senescence. Another way of developing crop varieties with improved nitrogen use efficiency, and identifying key elements controlling the process of nitrogen remobilisation, is the use of quantitative genetics. We present and discuss recent findings on the genetic variability and basis of nitrogen use efficiency in crops in general and in maize in particular. A genetic approach using maize recombinant inbred lines was undertaken allowing the detection of Quantitative Trait Loci (QTLs) for morphological traits, grain yield and its components under high nitrogen or low nitrogen input. Co‐mapping was observed between genes encoding enzymes involved in nitrogen assimilation (nitrate reductase, glutamine synthetase) and these Quantitative Trait Loci. All coincidences were consistent with the expected physiological function of the corresponding enzyme activities. This work strongly suggests that in maize, nitrogen use efficiency can be improved both by marker‐assisted selection and genetic engineering.  相似文献   

13.
Improved understanding of crop production systems in relation to N-supply has come from a knowledge of basic plant biochemistry and physiology. Gene expression leads to protein synthesis and the formation of metabolic systems; the ensuing metabolism determines the capacity for growth, development and yield production. This constitutes the genetic potential. These processes set the requirements for the supply of resources. The interactions between carbon dioxide (CO(2)) and nitrate () assimilation and their dynamics are of key importance for crop production. In particular, an adequate supply of, its assimilation to amino acids (for which photosynthesized carbon compounds are required) and their availability for protein synthesis, are essential for metabolism. An adequate supply of stimulates leaf growth and photosynthesis, the former via cell growth and division, the latter by larger contents of components of the light reactions, and those of CO(2) assimilation and related processes. If the supply of resources exceeds the demand set by the genetic potential then production is maximal, but if it is less then potential is not reached; matching resources to potential is the aim of agriculture. However, the connection between metabolism and yield is poorly quantified. Biochemical characteristics and simulation models must be better used and combined to improve fertilizer-N application, efficiency of N-use, and yields. Increasing N-uptake at inadequate N-supply by increasing rooting volume and density is feasible, increasing affinity is less so. It would increase biomass and N/C ratio. With adequate N, at full genetic potential, more C-assimilation per unit N would increase biomass, but energy would be limiting at full canopy. Increasing C-assimilation per unit N would increase biomass but decrease N/C at both large and small N-supply. Increasing production of all biochemical components would increase biomass and demand for N, and maintain N/C ratio. Changing C- or N-assimilation requires modifications to many processes to effect improvements in the whole system; genetic engineering/molecular biological alterations to single steps in the central metabolism are unlikely to achieve this, because targets are unclear, and also because of the complex interactions between processes and environment. Achievement of the long-term objectives of improving crop N-use and yield with fewer inputs and less pollution, by agronomy, breeding or genetic engineering, requires a better understanding of the whole system, from genes via metabolism to yield.  相似文献   

14.
Improving water use in crop production   总被引:2,自引:0,他引:2  
Globally, agriculture accounts for 80-90% of all freshwater used by humans, and most of that is in crop production. In many areas, this water use is unsustainable; water supplies are also under pressure from other users and are being affected by climate change. Much effort is being made to reduce water use by crops and produce 'more crop per drop'. This paper examines water use by crops, taking particularly a physiological viewpoint, examining the underlying relationships between carbon uptake, growth and water loss. Key examples of recent progress in both assessing and improving crop water productivity are described. It is clear that improvements in both agronomic and physiological understanding have led to recent increases in water productivity in some crops. We believe that there is substantial potential for further improvements owing to the progress in understanding the physiological responses of plants to water supply, and there is considerable promise within the latest molecular genetic approaches, if linked to the appropriate environmental physiology. We conclude that the interactions between plant and environment require a team approach looking across the disciplines from genes to plants to crops in their particular environments to deliver improved water productivity and contribute to sustainability.  相似文献   

15.
Arabidopsis was grown in a 12, 8, 4 or 3 h photoperiod to investigate how metabolism and growth adjust to a decreased carbon supply. There was a progressive increase in the rate of starch synthesis, decrease in the rate of starch degradation, decrease of malate and fumarate, decrease of the protein content and decrease of the relative growth rate. Carbohydrate and amino acids levels at the end of the night did not change. Activities of enzymes involved in photosynthesis, starch and sucrose synthesis and inorganic nitrogen assimilation remained high, whereas five of eight enzymes from glycolysis and organic acid metabolism showed a significant decrease of activity on a protein basis. Glutamate dehydrogenase activity increased. In a 2 h photoperiod, the total protein content and most enzyme activities decreased strongly, starch synthesis was inhibited, and sugars and amino acids levels rose at the end of the night and growth was completely inhibited. The rate of starch degradation correlated with the protein content and the relative growth rate across all the photoperiod treatments. It is discussed how a close coordination of starch turnover, the protein content and growth allows Arabidopsis to avoid carbon starvation, even in very short photoperiods.  相似文献   

16.
广州市农作物系统与大气的CO2交换   总被引:1,自引:0,他引:1  
在广泛收集资料和实验分析的基础上,研究了广州市各种农作物系统与大气CO2交换.分析了各种农作物系统净生产力吸收CO2的能力和碳汇功能大小.结果表明:2005年广州市8种农作物系统作物净生产力吸收CO2 4 032 366t·a-1,其土壤CO2排放3981753t·a-1,吸收大于排放,对大气CO2而言,整个农作物系统是一个弱的碳汇;水稻、甘蔗、木薯和果用瓜4种连作或高杆作物系统每年作物净生产力吸收CO2量大于土壤CO2的排放量,系统具有较大的碳汇功能,花生、大豆、花卉和蔬菜4种矮杆作物系统每年作物净生产力吸收CO2量小于土壤CO2的排放量,系统起着碳源作用;果实或经济产量生长在地上部分的作物其单位面积吸收CO2能力比果实(块根)生长在地下的作物大;除花生在生育期间生物量吸收CO2量少于同期土壤排放以外,其余7种作物在生育期间生物量吸收CO2的量大于同期土壤排放,大多数农作物在生育期间具有碳汇功能,在撂荒期才体现碳源作用.  相似文献   

17.
通过田间试验,研究了FACE(开放式空气CO2浓度升高)条件下C3作物水稻(Oryza sativa)和C4杂草稗草(Echinochloa crusgalli)的生长和竞争关系,结果表明,FACE条件下C3植物水稻生物量和产量增加,吉片数增加,分蘖数增加,叶面积系数(LAI)增大;而C4植物稗草相反,FACE条件下水稻和稗草中面积均减少,而净同化率(NAR)均增加;FACE条件下水稻-稗草比例为1:1时,水稻与稗草的生物量比率、产量比率、LAI比率、茎蘖比率和NAR比率均增加,水稻-稗草的竞争关系发生变化,水稻(C3植物)竞争能力增加,稗草(C4植物)竞争能力下降。  相似文献   

18.
通过田间试验,研究了FACE(开放式空气CO2浓度升高)条件下C3作物水稻(Oryza sativa)和C4杂草稗草(Echinochloa crusgalli)的生长和竞争关系.结果表明,FACE条件下C3植物水稻生物量和产量增加,叶片数增加,分蘖数增加,叶面积系数(LAI)增大;而C4植物稗草相反.FACE条件下水稻和稗草叶面积均减少,而净同化率(NAR)均增加.FACE条件下水稻稗草比例为1:1时,水稻与稗草的生物量比率、产量比率、LAI比率、茎蘖比率和NAR比率均增加,水稻稗草的竞争关系发生变化,水稻(C3植物)竞争能力增加,稗草(C4植物)竞争能力下降.  相似文献   

19.
Plant concepts for mineral acquisition and allocation   总被引:11,自引:0,他引:11  
Plant biotechnology is expected to make a major contribution to the steady increase of crop production in the near future. The improvement of mineral assimilation has to meet the challenges of reducing fertilizer application in developed countries, preserving the environment, enabling sustainable agriculture management and generating low-input crops with increased performance in areas where soil infertility limits productivity. Natural genetic resources and engineered plants will help to achieve the implementation of traits for improved mineral assimilation.  相似文献   

20.
SMITH  C. J. 《Annals of botany》1976,40(5):1003-1015
Effects of a change in night temperature with or without reductionin the duration of photosyntheticallyuseful light were studiedon assimilation and growth of Picea sitchensis seedlings. An increase in night temperature resulted in a rapid, but temporary,increase in photosynthesis while lowering the night temperaturedecreased photosynthetic rate. For the lowest night temperaturetreatments, reduction in light quantity resulted in increasedphotosynthetic efficiency while for the highest night temperaturetreatment, reduction in light quantity apparently checked thefinal decline in photosynthetic rate noted above. These changestended to minimize treatment effects on absolute growth andnet assimilation rates. The results are discussed in relationto the hypothesis or photosynthetic control by substrate level. Short-term redistribution of 14C labelled assimilate was examinedin control plants and those in the most and least adverse environments.In the most unfavourable environment, total l4C transport andincorporation into turnover materials increased while labellingof reserves and new growth decreased. Paradoxically, labellingpatterns for plants in the most favourable environment weresimilar although total 14C transport was much reduced. It issuggested that this indicates a substrate excess resulting fromoverloading of transport and utilization systems. Growth pattern was markedly affected in the case of developingbranch initials and established branches only. The possibilitythat the observed changes represent adaptive responses is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号