首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To study the distribution of blood flow after blood volume expansion, seven miniature swine ran at high speed (17.6-20 km/h, estimated to require 115% of maximal O2 uptake) on a motor-driven treadmill on two occasions: once during normovolemia and once after an acute 15% blood volume expansion (homologous whole blood). O2 uptake, cardiac output, heart rate, mean arterial pressure, and distribution of blood flow (with radiolabeled microspheres) were measured at the same time during each of the exercise bouts. Maximal heart rate was identical between conditions (mean 266); mean arterial pressure was elevated during the hypovolemic exercise (149 +/- 5 vs. 137 +/- 6 mmHg). Although cardiac output was higher and arterial O2 saturation was maintained during the hypervolemic condition (10.5 +/- 0.7 vs. 9.3 +/- 0.6 l/min), O2 uptake was not different (1.74 +/- 0.08 vs. 1.74 +/- 0.09 l/min). Mean blood flows to cardiac (+12.9%), locomotory (+9.8%), and respiratory (+7.5%) muscles were all elevated during hypervolemic exercise, while visceral and brain blood flows were unchanged. Calculated resistances to flow in skeletal and cardiac muscle were not different between conditions. Under the experimental conditions of this study, O2 uptake in the miniature swine was limited at the level of the muscles during hypervolemic exercise. The results also indicate that neither intrinsic contractile properties of the heart nor coronary blood flow limits myocardial performance during normovolemic exercise, because both the pumping capacity of the heart and the coronary blood flow were elevated in the hypervolemic condition.  相似文献   

3.
4.
5.
To determine whether coronary sinus outflow pressure (Pcs) or intramyocardial tissue pressure (IMP) is the effective back pressure in the different layers of the left ventricular (LV) myocardium, we increased Pcs in 14 open-chest dogs under maximal coronary artery vasodilation. Circumflex arterial (flowmeter), LV total, and subendocardial and subepicardial (15-microns radioactive spheres) pressure-flow relationships (PFR) and IMP (needle-tip pressure transducers) were recorded during graded constriction of the artery at two diastolic Pcs levels (7 +/- 3 vs. 23 +/- 4 mmHg). At high Pcs, LV, aortic and diastolic circumflex arterial pressure, heart rate, myocardial oxygen consumption, and lactate extraction were unchanged; IMP in the subendocardium did not change (130/19 mmHg), whereas IMP in the subepicardium increased by 17 mmHg during systole and 10 mmHg during diastole (P < or = 0.001), independently of circumflex arterial pressure. Increasing Pcs did not change the slope of the PFR; however, coronary pressure at zero flow increased in the subepicardium (P < or = 0.008), whereas in the subendocardium it remained unchanged at 24 +/- 3 mmHg. Thus Pcs can regulate IMP independently of circumflex arterial pressure and consequently influence myocardial perfusion, especially in the subepicardial tissue layer of the LV.  相似文献   

6.
7.
8.
Darlington, Daniel N., and Majid J. Tehrani. Bloodflow, vascular resistance, and blood volume after hemorrhage in conscious adrenalectomized rat. J. Appl.Physiol. 83(5): 1648-1653, 1997.Hemorrhage leadsto cardiovascular collapse and death in adrenal-insufficient animals.To determine whether the cardiovascular collapse is due to vasodilationand/or failure to restore blood volume, we used radiolabeledmicrospheres and 125I-labeledalbumin to measure blood flow and blood volume in conscious adrenalectomized (ADX) rats after 15 ml · kg1 · 3 min1 hemorrhage. In ADXrats, hemorrhage led to a greater fall than in sham rats in blood flowin the stomach, small intestines, cecum, colon, spleen, hepatic portalvein, kidney, testis, lung, thymus, bone, fat, forebrain, cerebellum,and brainstem. The greater fall in blood flow was caused by an increasein vascular resistance in these organs except brain and hepatic artery.Sham rats maintained or increased brain and hepatic artery blood flowafter hemorrhage whereas flow decreased and remained depressed in ADXrats. ADX rats failed to restore blood volume, whereas sham ratscompletely restored blood flow by 2 h. We conclude that cardiovascularcollapse in ADX rats does not result from vasodilatation but may result from a failure to restore blood volume. The failure to restore bloodvolume and the low blood flow to organs, especially brain and liver,may contribute to mortality in ADX rats after hemorrhage.

  相似文献   

9.
10.
Exercise training has been found to increase coronary vascularity of the heart in experimental animals. Maximum coronary flow and minimum coronary resistance were determined in 16 dogs with the injection of microspheres (15 micron) into the left atrium at rest and during the intravenous infusion of adenosine (0.7 mg X min-1 X kg-1). Heart rate was paced at 150 beats/min. Dogs were divided into three groups with microsphere injections made before and after 4-5 wk of daily exercise (group 1); before and after 8-10 wk of daily exercise (group II); and before and after 8-10 wk of cage rest (group III). Results of average left ventricular maximum myocardial flow before and after daily exercise were 4.08 +/- 0.34 and 4.89 +/- 0.33 ml X min-1 X g-1 for group I, 5.13 +/- 0.32 and 5.55 +/- 0.56 ml X min-1 X g-1 for group II, and 5.24 +/- 0.43 and 4.34 +/- 0.55 ml X min-1 X g-1 for group III. Arterial pressure, maximum coronary flow, and minimum coronary resistance were not significantly different before and after any condition in all three groups of dogs. Peak reactive hyperemia coronary flow was not altered by daily exercise. These results indicate that maximum coronary flow and minimum coronary resistance were not altered by either 4-5 or 8-10 wk of exercise training.  相似文献   

11.
12.
This study was performed to determine the myocyte PO(2) required to sustain normal high-energy phosphate (HEP) levels in the in vivo heart. In 10 normal dogs, myocyte PO(2) values were calculated from the myocardial deoxymyoglobin resonance (Mb-delta) intensity determined with (1)H-NMR spectroscopy during sequential flow reductions produced by a hydraulic occluder that decreased coronary perfusion pressure to approximately 60, 50, and 40 mmHg and, finally, during total occlusion. Myocardial blood flow was measured with microspheres, and HEP levels were determined with (31)P magnetic resonance spectroscopy. During control conditions, Mb-delta was undetectable. Myocardial blood flow was 1.11 +/- 0.06 ml. min(-1). g(-1) during basal conditions and decreased with sequential graded occlusions to 0.78 +/- 0.05, 0.58 +/- 0.03, and 0.38 +/- 0.04 ml. min(-1). g(-1), respectively; blood flow during total occlusion was 0.07 +/- 0.02 ml. min(-1). g(-1). Reductions of blood flow caused progressive increases of Mb-delta, which were associated with decreases of phosphocreatine (PCr), ATP, and the PCr-to-ATP ratio, as well as progressive increases of the P(i)-to-PCr ratio. There was a strong linear correlation between normalized blood flow and Mb-delta (R(2) = 0.89, P < 0.01). Reductions of HEP and PO(2) were also highly correlated (although nonlinearly); with the assumption that myoglobin was 90% saturated with O(2) during basal conditions and 5% saturated during total coronary occlusion, the intracellular PO(2) values for 20% reductions of PCr and ATP were approximately 4. 4 and approximately 0.9 mmHg, respectively. The data indicate that O(2) availability plays an increasing role in regulation of oxidative phosphorylation when mean intracellular PO(2) values fall below 5 mmHg in the in vivo heart.  相似文献   

13.
To evaluate the local hemodynamic implications of coronary artery balloon angioplasty, computational fluid dynamics (CFD) was applied in a group of patients previously reported by [Wilson et al. (1988), 77, pp. 873-885] with representative stenosis geometry post-angioplasty and with measured values of coronary flow reserve returning to a normal range (3.6 +/- 0.3). During undisturbed flow in the absence of diagnostic catheter sensors within the lesions, the computed mean pressure drop delta p was only about 1 mmHg at basal flow, and increased moderately to about 8 mmHg for hyperemic flow. Corresponding elevated levels of mean wall shear stress in the midthroat region of the residual stenoses, which are common after angioplasty procedures, increased from about 60 to 290 dynes/cm2 during hyperemia. The computations (Ree approximately equal to 100-400; alpha e = 2.25) indicated that the pulsatile flow field was principally quasi-steady during the cardiac cycle, but there was phase lag in the pressure drop-mean velocity (delta p - u) relation. Time-averaged pressure drop values, delta p, were about 20 percent higher than calculated pressure drop values, delta ps, for steady flow, similar to previous in vitro measurements by Cho et al. (1983). In the throat region, viscous effects were confined to the near-wall region, and entrance effects were evident during the cardiac cycle. Proximal to the lesion, velocity profiles deviated from parabolic shape at lower velocities during the cardiac cycle. The flow field was very complex in the oscillatory separated flow reattachment region in the distal vessel where pressure recovery occurred. These results may also serve as a useful reference against catheter-measured pressure drops and velocity ratios (hemodynamic endpoints) and arteriographic (anatomic) endpoints post-angioplasty. Some comparisons to previous studies of flow through stenoses models are also shown for perspective purposes.  相似文献   

14.
15.
Coronary artery disease (CAD) is characterized by the progression of atherosclerosis, a complex pathological process involving the initiation, deposition, development, and breakdown of the plaque. The blood flow mechanics in arteries play a critical role in the targeted locations and progression of atherosclerotic plaque. In coronary arteries with motion during the cardiac contraction and relaxation, the hemodynamic flow field is substantially different from the other arterial sites with predilection of atherosclerosis. In this study, our efforts focused on the effects of arterial motion and local geometry on the hemodynamics of a left anterior descending (LAD) coronary artery before and after clinical intervention to treat the disease. Three-dimensional (3D) arterial segments were reconstructed at 10 phases of the cardiac cycle for both pre- and postintervention based on the fusion of intravascular ultrasound (IVUS) and biplane angiographic images. An arbitrary Lagrangian-Eulerian formulation was used for the computational fluid dynamic analysis. The measured arterial translation was observed to be larger during systole after intervention and more out-of-plane motion was observed before intervention, indicating substantial alterations in the cardiac contraction after angioplasty. The time averaged axial wall shear stress ranged from -0.2 to 9.5 Pa before intervention compared to -0.02 to 3.53 Pa after intervention. Substantial oscillatory shear stress was present in the preintervention flow dynamics compared to that in the postintervention case.  相似文献   

16.
To assess the relationship between blood volume (BV) and the reduction in plasma volume (PV) during exercise in individual variations, we measured BV and changes in PV in thirteen male volunteers during treadmill exercise until exhaustion. The lactate threshold (LT), as a predictor of aerobic exercise capacity, was calculated from the exercise intensity at the point of plasma lactate concentration buildup to 4 mmol. The relationship of peak VO2 with BV indicated a significant positive correlation. The strong positive relation between the shifts in PV and total PV, and resulted in a maintenance of the circulating BV.  相似文献   

17.
Increased blood pressure (BP) and heart rate during exercise characterizes the exercise pressor reflex. When evoked by static handgrip, mechanoreceptors and metaboreceptors produce regional changes in blood volume and blood flow, which are incompletely characterized in humans. We studied 16 healthy subjects aged 20-27 yr using segmental impedance plethysmography validated against dye dilution and venous occlusion plethysmography to noninvasively measure changes in regional blood volumes and blood flows. Static handgrip while in supine position was performed for 2 min without postexercise ischemia. Measurements of heart rate and BP variability and coherence analyses were used to examine baroreflex-mediated autonomic effects. During handgrip exercise, systolic BP increased from 120 +/- 10 to 148 +/- 14 mmHg, whereas heart rate increased from 60 +/- 8 to 82 +/- 12 beats/min. Heart rate variability decreased, whereas BP variability increased, and transfer function amplitude was reduced from 18 +/- 2 to 8 +/- 2 ms/mmHg at low frequencies of approximately 0.1 Hz. This was associated with marked reduction of coherence between BP and heart rate (from 0.76 +/- 0.10 to 0.26 +/- 0.05) indicative of uncoupling of heart rate regulation by the baroreflex. Cardiac output increased by approximately 18% with a 4.5% increase in central blood volume and an 8.5% increase in total peripheral resistance, suggesting increased cardiac preload and contractility. Splanchnic blood volume decreased reciprocally with smaller decreases in pelvic and leg volumes, increased splanchnic, pelvic and calf peripheral resistance, and evidence for splanchnic venoconstriction. We conclude that the exercise pressor reflex is associated with reduced baroreflex cardiovagal regulation and driven by increased cardiac output related to enhanced preload, cardiac contractility, and splanchnic blood mobilization.  相似文献   

18.
The aim of this study was to assess clinical parameters in patients with coronary heart disease (CHD) in the late period after balloon coronary angioplasty (BCA) and intracoronary stenting (ICS). The study included 104 patients who underwent repeated coronary angiography (CA) 2-10 months after successful coronary angioplasty. Clinical parameters were analyzed in 2 groups comparable at the moment of its performance in terms of major clinical characteristics. Group 1 comprised 51 patients following BCA and group 2 included 53 patients after ICS. Six months after the first procedure, repeated coronary angioplasty was performed in 19 (37.2%) and 6 (9.4%) patients after BCA and ICS, respectively (p < 0.05). Recurrent angina pectoris was observed in 42 patients from group 1 and in 25 ones from group 2, which was 82.3 and 47.2%, respectively (p < 0.05). Control CA revealed restenosis of the dilated artery in 22 (43.1%) of the 51 patients of group 1 and in 12 (22.6%) of the 53 patients of group 2. There were no differences between the groups in late postoperative bicycle ergometric and 24-hour ECG monitoring findings. The findings have led to the conclusion that implantation of a stent into the coronary artery greatly prolongs the antiischemic effect of coronary angioplasty and reduces a need for repeated endovascular intervention, which appears as lower incidence rates of restenosis and recurrent angina as compared to routine balloon angioplasty.  相似文献   

19.
A 49-year-old man with a medical history of hypertension was admitted within one hour after the onset of an acute anterior myocardial infarction with ST elevation for primary coronary intervention (PCI).  相似文献   

20.
Despite the fact that numerous studies have been published regarding the possible presence in plasma of an endogenous Na-K pump inhibitor with a digitalis-like structure in essential hypertension, very little is known about this factor in heart disease in general, and in situations characterized by low cardiac output. We measured the ability of plasma obtained from the femoral vein to inhibit a human renal Na(+)-K+ ATPase before and immediately after percutaneous transluminal coronary angioplasty (PTCA) in 6 patients suffering from angina pectoris and severe coronary stenosis. Intraerythrocyte sodium and potassium concentrations were also measured simultaneously. Na(+)-K+ ATPase inhibition proved significantly greater after angioplasty as compared to basal activity (percentage inhibition: 31.5 +/- 7.8 vs 16.1 +/- 12.2). No significant changes in intraerythrocyte sodium and potassium were detected. Though we are not in a position to define the mechanism underlying the increase in the digitalis-like factor, a plausible hypothesis may be that the reduction in cardiac output during PTCA by raising cardiac pressures may stimulate the production of a factor of compensatory inotropic significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号