首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxidases (PRX, EC 1.11.1.7) are widely distributed across microorganisms, plants, and animals; and, in plants, they have been implicated in a variety of secondary metabolic reactions. In particular, horseradish (Armoracia rusticana) root represents the main source of commercial PRX production. The prxC1a gene, which encodes horseradish PRX (HRP) C, is expressed mainly in the roots and stems of the horseradish plant. HRP C1a protein is shown to be synthesized as a preprotein with both a N-terminal (NTPP) and a C-terminal propeptide (CTPP). These propeptides, which might be responsible for intracellular localization or secretion, are removed before or concomitant with production of the mature protein. We investigated the functional role of HRP C1a NTPP and CTPP in the determination of the vesicular transport route, using an analytical system of transgenically cultured tobacco cells (Nicotiana tabacum, BY2). Here, we report that NTPP and CTPP are necessary and sufficient for accurate localization of mature HRP C1a protein to vacuoles of the vesicular transport system. We also demonstrate that HRP C1a derived from a preprotein lacking CTPP is shunted into the secretory pathway.  相似文献   

2.
The plant vacuolar sorting receptor (VSR) binds proteins carrying vacuolar sorting signals (VSS) of the 'sequence-specific' type (ssVSS) but not the C-terminal, hydrophobic sorting signals (ctVSS). Seeds of Arabidopsis mutants lacking the major VSR isoform, AtVSR1, secrete a proportion of the proteins destined to storage vacuoles. The sorting signals for these proteins are not well defined, but they do not seem to be of the ssVSS type. Here, we tested whether absence of VSR1 in seeds leads to secretion of reporter proteins carrying ssVSS but not ctVSS. Our results show that reporters carrying either ssVSS or ctVSS are equally secreted in the absence of VSR1. We discuss our findings in relation to the current model for vacuolar sorting.  相似文献   

3.
Two types of vacuolar sorting signals (VSSs), an asparagine-proline-isoleucine-arginine-leucine (NPIRL)-related VSS in the N-terminal propeptides (NTPPs) and a C-terminal VSS in the C-terminal propeptides (CTPPs), function differently in plant cells. A precursor to a 20-kDa protein of potato tuber (PT20) contains two NPIRL-related sequences, NPINL in a short NTPP and NPLDV close to the C terminus of the precursor. We made mutant forms of sweet potato sporamin (SPO), nPT20-SPO, in which the N-terminal pre-pro part was exchanged with that of the precursor to PT20, and SPO-PT20c, in which the C-terminal 13 amino acids of the precursor to PT20 was attached to the C terminus of delta pro-SPO which lacked NTPP. Both nPT20-SPO and SPO-PT20c were efficiently transported to the vacuoles in tobacco cells. Unlike nPT20-SPO, the vacuolar transport of SPO-PT20c was inhibited by wortmannin and by the C-terminal addition of Gly or Gly-Gly suggesting its similarity to the vacuolar transport of sporamin mediated by CTPP of barley lectin. Further analysis of the C-terminal sequence of PT20 indicated that the most C-terminal SFKQVQ sequence functions as the C-terminal VSS. These results suggest that the precursor to PT20 contains both NPIRL-like VSS in its NTPP and C-terminal VSS at the C terminus.  相似文献   

4.
Cis-elements of protein transport to the plant vacuoles   总被引:6,自引:0,他引:6  
Vacuolar proteins are synthesized and translocated into the endoplasmic reticulum and transported to the vacuoles through the secretory pathway. Three different types of vacuolar sorting signals have been identified, carried by N- or C-terminal propeptides or internal sequences. These signals are needed to target proteins to the different types of vacuoles that can coexist in a single plant cell. A conserved motif (NPIXL or NPIR) was identified within N-terminal propeptides, but can also function in a C-terminal propeptide and targets proteins in a receptor-mediated manner to a lytic vacuole. Binding to a family of putative sorting receptors for sequence-specific vacuolar sorting signals has been used as an assay to identify further peptides with other binding motifs. No motif was found in C-terminal sorting sequences, which need an accessible terminus, suggesting that they are recognized from the end by a still unknown receptor. The phosphatidylinositol kinase inhibitor wortmannin differentially affects sorting mediated by these two sorting sequences, suggesting different sorting mechanisms. Less is known about sorting mediated by internal protein sequences, which do not contain the conserved motif identified in N-terminal propeptides and by function by aggregation, leading to transport by coat-less dense vesicles to protein storage vacuoles. Even less is known about the sorting of tonoplast proteins, for which several sorting systems will also be needed.  相似文献   

5.
Using immunogold electron microscopy, we have investigated the relative distribution of two types of vacuolar sorting receptors (VSR) and two different types of lumenal cargo proteins, which are potential ligands for these receptors in the secretory pathway of developing Arabidopsis embryos. Interestingly, both cargo proteins are deposited in the protein storage vacuole, which is the only vacuole present during the bent-cotyledon stage of embryo development. Cruciferin and aleurain do not share the same pattern of distribution in the Golgi apparatus. Cruciferin is mainly detected in the cis and medial cisternae, especially at the rims where storage proteins aggregate into dense vesicles (DVs). Aleurain is found throughout the Golgi stack, particularly in the trans cisternae and trans Golgi network where clathrin-coated vesicles (CCVs) are formed. Nevertheless, aleurain was detected in both DV and CCV. VSR-At1, a VSR that recognizes N-terminal vacuolar sorting determinants (VSDs) of the NPIR type, localizes mainly to the trans Golgi and is hardly detectable in DV. Receptor homology-transmembrane-RING H2 domain (RMR), a VSR that recognizes C-terminal VSDs, has a distribution that is very similar to that of cruciferin and is found in DV. Our results do not support a role for VSR-At1 in storage protein sorting, instead RMR proteins because of their distribution similar to that of cruciferin in the Golgi apparatus and their presence in DV are more likely candidates. Aleurain, which has an NPIR motif and seems to be primarily sorted via VSR-At1 into CCV, also possesses putative hydrophobic sorting determinants at its C-terminus that could allow the additional incorporation of this protein into DV.  相似文献   

6.
Potato tuber storage proteins were obtained from vacuoles isolated from field-grown starch potato tubers cv. Kuras. Vacuole sap proteins fractionated by gel filtration were studied by mass spectrometric analyses of trypsin and chymotrypsin digestions. The tuber vacuole appears to be a typical protein storage vacuole absent of proteolytic and glycolytic enzymes. The major soluble storage proteins included 28 Kunitz protease inhibitors, nine protease inhibitors 1, eight protease inhibitors 2, two carboxypeptidase inhibitors, eight patatins and five lipoxygenases (lox), which all showed cultivar-specific sequence variations. These proteins, except for lox, have typical endoplasmic reticulum (ER) signal peptides and putative vacuolar sorting determinants of either the sequence or structure specific type or the C-terminal type, or both. Unexpectedly, sap protein variants imported via the ER showed multiple molecular forms because of extensive and unspecific proteolytic cleavage of exposed N- and C-terminal propeptides and surface loops, in spite of the abundance of protease inhibitors. Some propeptides are potential novel vacuolar targeting peptides. In the insoluble vacuole fraction two variants of phytepsin (aspartate protease) were identified. These are most probably the processing enzymes of potato tuber vacuolar proteins. Database Proteome data have been submitted to the PRIDE database under accession number 17707.  相似文献   

7.
Over 60 genes have been identified that affect protein sorting to the lysosome-like vacuole in Saccharomyces cerevisiae. Cells with mutations in these vacuolar protein sorting (vps) genes fall into seven general classes based upon their vacuolar morphology. Class A mutants have a morphologically wild type vacuole, while Class B mutants have a fragmented vacuole. There is no discernable vacuolar structure in Class C mutants. Class D mutants have a slightly enlarged vacuole, but Class E mutants have a normal looking vacuole with an enlarged prevacuolar compartment (PVC), which is analogous to the mammalian late endosome. Class F mutants have a wild type appearing vacuole as well as fragmented vacuolar structures. vps mutants have also been found with a tubulo-vesicular vacuole structure. vps mutant morphology is pertinent, as mutants of the same class may work together and/or have a block in the same general step in the vacuolar protein sorting pathway. We probed PVC morphology and location microscopically in live cells of several null vps mutants using a GFP fusion protein of Nhx1p, an Na(+)/H(+) exchanger normally localized to the PVC. We show that cell strains deleted for VPS proteins that have been previously shown to work together, regardless of VPS Class, have the same PVC morphology. Cell strains lacking VPS genes that have not been implicated in the same pathway show different PVC morphologies, even if the mutant strains are in the same VPS Class. These new studies indicate that PVC morphology is another tier of classification that may more accurately identify proteins that function together in vacuolar protein sorting than the original vps mutation classes.  相似文献   

8.
Precursor forms of vacuolar proteins with transmembrane domains, such as the carboxypeptidase S Cps1p and the polyphosphatase Phm5p, are selectively sorted in endosomal compartments to vesicles that invaginate, budding into the lumen of the late endosomes, resulting in the formation of multivesicular bodies (MVBs). These proteins are then delivered to the vacuolar lumen following fusion of the MVBs with the vacuole. The sorting of Cps1p and Phm5p to these structures is mediated by ubiquitylation, and in doa4 mutant cells, which have reduced level of free ubiquitin, these proteins are missorted to the vacuolar membrane. A RING-finger ubiquitin ligase Tul1p has been shown to participate in the ubiquitylation of Cps1p and Phm5p. We show here that the HECT-ubiquitin ligase Rsp5p is also required for the ubiquitylation of these proteins, and therefore for their sorting to MVBs. Rsp5p is an essential ubiquitin ligase containing an N-terminal C2 domain followed by three WW domains, and a C-terminal catalytic HECT domain. In cells with low levels of Rsp5p (npi1 mutant cells), vacuolar hydrolases do not reach the vacuolar lumen and are instead missorted to the vacuolar membrane. The C2 domain and both the second and third WW domains of Rsp5p are important determinants for sorting to MVBs. Ubiquitylation of Cps1p was strongly reduced in the npi1 mutant strain and ubiquitylation was completely abolished in the npi1 tul1Delta double mutant. These data demonstrate that Rsp5p plays a novel and key role in intracellular trafficking, and extend the currently very short list of substrates ubiquitylated in vivo by several different ubiquitin ligases acting cooperatively.  相似文献   

9.
Protein trafficking to two different types of vacuoles was investigated in tobacco (Nicotiana tabacum cv SR1) mesophyll protoplasts using two different vacuolar green fluorescent proteins (GFPs). One GFP is targeted to a pH-neutral vacuole by the C-terminal vacuolar sorting determinant of tobacco chitinase A, whereas the other GFP is targeted to an acidic lytic vacuole by the N-terminal propeptide of barley aleurain, which contains a sequence-specific vacuolar sorting determinant. The trafficking and final accumulation in the central vacuole (CV) or in smaller peripheral vacuoles differed for the two reporter proteins, depending on the cell type. Within 2 d, evacuolated (mini-) protoplasts regenerate a large CV. Expression of the two vacuolar GFPs in miniprotoplasts indicated that the newly formed CV was a lytic vacuole, whereas neutral vacuoles always remained peripheral. Only later, once the regeneration of the CV was completed, the content of peripheral storage vacuoles could be seen to appear in the CV of a third of the cells, apparently by heterotypic fusion.  相似文献   

10.
Two Arabidopsis thaliana genes have been shown to function in vacuolar sorting of seed storage proteins: a vacuolar sorting receptor, VSR1/ATELP1, and a retromer component, MAIGO1 (MAG1)/VPS29. Here, we show an efficient and simple method for isolating vacuolar sorting mutants of Arabidopsis. The method was based on two findings in this study. First, VSR1 functioned as a sorting receptor for beta-conglycinin by recognizing the vacuolar targeting signal. Second, when green fluorescent protein (GFP) fusion with the signal (GFP-CT24) was expressed in vsr1, mag1/vps29, and wild-type seeds, both vsr1and mag1/vps29 gave strongly fluorescent seeds but the wild type did not, suggesting that a defect in vacuolar sorting provided fluorescent seeds by the secretion of GFP-CT24 out of the cells. We mutagenized transformant seeds expressing GFP-CT24. From approximately 3,000,000 lines of M2 seeds, we obtained >100 fluorescent seeds and designated them green fluorescent seed (gfs) mutants. We report 10 gfs mutants, all of which caused missorting of storage proteins. We mapped gfs1 to VSR1, gfs2 to KAM2/GRV2, gfs10 to the At4g35870 gene encoding a novel membrane protein, and the others to different loci. This method should provide valuable insights into the complex molecular mechanisms underlying vacuolar sorting of storage proteins.  相似文献   

11.
Many of the vacuolar protein sorting (vps) mutants of Saccharomyces cerevisiae exhibit severe defects in the sorting of vacuolar proteins but still retain near-normal vacuole morphology. The gene affected in one such mutant, vps21, has been cloned and found to encode a member of the ras-like GTP binding protein family. Sequence comparisons with other known GTP binding proteins indicate that Vps21p is unique but shares striking similarity with mammalian rab5 proteins (> 50% identity and > 70% similarity). Regions with highest similarity are clustered within the putative GTP binding motifs and the proposed effector domains of the Vps21/rab5 proteins. Point mutations constructed within these conserved regions inactivate Vps21p function; the mutant cells missort and secrete the soluble vacuolar hydrolase carboxypeptidase Y (CPY). Cells carrying a complete deletion of the VPS21 coding sequence (i) are viable but exhibit a growth defect at 38 degrees C, (ii) missort multiple vacuolar proteins, (iii) accumulate 40-50 nm vesicles and (iv) contain a large vacuole. VPS21 encodes a 22 kDa protein that binds GTP and fractionates with subcellular membranes. Mutant analysis indicates that the association with a membrane(s) is dependent on geranylgeranylation of the C-terminal cysteine residue(s) of Vps21p. We propose that Vps21p functions in the targeting and/or fusion of transport vesicles that mediate the delivery of proteins to the vacuole.  相似文献   

12.
Seed storage proteins accumulate either in the endoplasmic reticulum (ER) or in vacuoles, and it would appear that polymerization events play a fundamental role in regulating the choice between the two destinies of these proteins. We previously showed that a fusion between the Phaseolus vulgaris vacuolar storage protein phaseolin and the N‐terminal half of the Zea mays prolamin γ‐zein forms interchain disulfide bonds that facilitate the formation of ER‐located protein bodies. Wild‐type phaseolin does not contain cysteine residues, and assembles into soluble trimers that transiently polymerize before sorting to the vacuole. These transient interactions are abolished when the C‐terminal vacuolar sorting signal AFVY is deleted, indicating that they play a role in vacuolar sorting. We reasoned that if the phaseolin interactions directly involve the C terminus of the polypeptide, a cysteine residue introduced into this region could stabilize these transient interactions. Biochemical studies of two mutated phaseolin proteins in which a single cysteine residue was inserted at the C terminus, in the presence (PHSL*) or absence (Δ418*) of the vacuolar signal AFVY, revealed that these mutated proteins form disulphide bonds. PHSL* had reduced protein solubility and a vacuolar trafficking delay with respect to wild‐type protein. Moreover, Δ418* was in part redirected to the vacuole. Our experiments strongly support the idea that vacuolar delivery of phaseolin is promoted very early in the sorting process, when polypeptides are still contained within the ER, by homotypic interactions.  相似文献   

13.
Our previous work found the two yeast plasma membrane-localized casein kinases Yck1p and Yck2p to be palmitoylated on C-terminal Cys-Cys sequences by the palmitoyl transferase Akr1p. The present work examines a third casein kinase, Yck3p, which ends with the C-terminal sequence Cys-Cys-Cys-Cys-Phe-Cys-Cys-Cys. Yck3p is palmitoylated and localized to the vacuolar membrane. While the C-terminal cysteines are required for this palmitoylation, Akr1p is not. Palmitoylation requires the C-terminal Yck3p residues 463-524, whereas information for vacuolar sorting maps to the 409-462 interval. Vacuolar sorting is disrupted in cis through deletion of the 409-462 sequences and in trans through mutation of the AP-3 adaptin complex; both cis- and trans-mutations result in Yck3p missorting to the plasma membrane. This missorted Yck3p restores 37 degrees C viability to yck1Delta yck2-ts cells. yck1Delta yck2-ts suppressor mutations isolated within the YCK3 gene identify the Yck3p vacuolar sorting signal-the tetrapeptide YDSI, a perfect fit to the YXXPhi adaptin-binding consensus. Although YXXPhi signals have a well-appreciated role in the adaptin-mediated sorting of mammalian cells, this is the first signal of this class to be identified in yeast.  相似文献   

14.
Vacuolar sorting of seed storage proteins is a very complex process since several sorting pathways and interactions among proteins of different classes have been reported. In addition, although the C-terminus of several 7S proteins is important for vacuolar delivery, other signals seem also to be involved in this process. In this work, the ability of two sequences of the Amaranthus hypochondriacus 11S globulin (amaranthin) to target reporter proteins to vacuoles was studied. We show that the C-terminal pentapeptide (KISIA) and the GNIFRGF internal sequence fused at the C terminal region of genes encoding secretory versions of green fluorescent protein (GFP) and GFP-beta-glucuronidase (GFP-GUS) were sufficient to redirect these reporter proteins to the vacuole of Arabidopsis cells. According to the three-dimensional structure of 7S and 11S storage globulins, this internal vacuolar sorting sequence corresponds to the alpha helical region involved in trimer formation, and is conserved within these families. In addition, these sequences were able to interact in vitro, in a calcium dependent manner, with the sunflower vacuolar sorting receptor homolog to pea BP-80/AtVSR1/pumpkin PV72. This work shows for the first time the role of a short internal sequence conserved among 7S and 11S proteins in vacuolar sorting.  相似文献   

15.
M Seeger  G S Payne 《The EMBO journal》1992,11(8):2811-2818
We have investigated the role of clathrin in vacuolar protein sorting using yeast strains harboring a temperature-sensitive allele of clathrin heavy chain (chc1-ts). After a 5 min incubation at the non-permissive temperature (37 degrees C), the chc1-ts strains displayed a severe defect in the sorting of lumenal vacuolar proteins. Sorting of a vacuolar membrane protein, alkaline phosphatase, and transport to the surface of a cell wall protein, was not affected at 37 degrees C. In chc1-ts cells incubated at 37 degrees C, secretion of the missorted lumenal vacuolar protein carboxypeptidase Y (CPY) was blocked by the sec1 mutation which prevents fusion of secretory vesicles to the plasma membrane. Unexpectedly, chc1-ts cells incubated for extended periods at 37 degrees C regained the ability to sort CPY. Cells carrying deletions of the CHC1 gene (chc1 delta) also sorted CPY to the vacuole even when subjected to temperature shifts. Vacuolar delivery of CPY in chc1 delta cells was not blocked by sec1 suggesting that transport does not occur by secretion and endocytosis. These results provide in vivo evidence that clathrin plays a role in the Golgi complex in sorting of vacuolar proteins from the secretory pathway. With time, however, yeast cells lacking functional clathrin heavy chains are able to adapt in a way that allows restoration of vacuolar protein sorting in the Golgi complex. These conclusions clarify previous studies of chc1 delta cells which raised the possibility that clathrin is not involved in vacuolar protein sorting.  相似文献   

16.
Vacuolar sorting receptors (VSRs) in Arabidopsis mediate the sorting of soluble proteins to vacuoles in the secretory pathway. The VSRs are post‐translationally modified by the attachment of N‐glycans, but the functional significance of such a modification remains unknown. Here we have studied the role(s) of glycosylation in the stability, trafficking and vacuolar protein transport of AtVSR1 in Arabidopsis protoplasts. AtVSR1 harbors three complex‐type N‐glycans, which are located in the N‐terminal ‘PA domain’, the central region and the C‐terminal epidermal growth factor repeat domain, respectively. We have demonstrated that: (i) the N‐glycans do not affect the targeting of AtVSR1 to pre‐vacuolar compartments (PVCs) and its vacuolar degradation; and (ii) N‐glycosylation alters the binding affinity of AtVSR1 to cargo proteins and affects the transport of cargo into the vacuole. Hence, N‐glycosylation of AtVSR1 plays a critical role in its function as a VSR in plants.  相似文献   

17.
Valiathan RR  Resh MD 《Journal of virology》2004,78(22):12386-12394
Many enveloped viruses use the ESCRT proteins of the cellular vacuolar protein sorting pathway for efficient egress from the cell. Recruitment of the ESCRT proteins by human immunodeficiency virus type 1 (HIV-1) Gag is required for HIV-1 particle budding and egress. ESCRT proteins normally function at endosomal membranes, where they facilitate the downregulation of mitogen-activated receptors such as EGF receptor (EGFR) through multivesicular body biogenesis. It is not known whether the Gag-mediated recruitment of ESCRT proteins functionally depletes the pool of these molecules that is available for the downregulation of EGFR. Here we show that the expression of HIV-1 Gag decreases the rate of EGFR downregulation, as assessed by decreases in the rates of (125)I-EGF and EGFR degradation. The effect of Gag was dependent on the presence of the TSG101 binding motif (PTAP) within the Gag C-terminal p6 domain. Cells expressing HIV-1 Gag retained more EGFR in late endosomes. This effect occurred when Gag was expressed alone from a heterologous promoter and when Gag expression was driven by the HIV-1 long terminal repeat within pHXB2DeltaBalD25S, a noninfectious lentiviral vector. Gag-expressing cells exhibited higher levels of activated mitogen-activated protein kinase for longer times after EGF addition than did cells that did not express HIV-1 Gag. These results indicate that HIV-1 Gag can impinge upon the functioning of the cellular vacuolar protein sorting pathway and reveal yet another facet of the intricate effects of HIV-1 infection on host cell physiology.  相似文献   

18.
Ubiquitylation is used to target proteins into a large number of different biological processes including proteasomal degradation, endocytosis, virus budding, and vacuolar protein sorting (Vps). Ubiquitylated proteins are typically recognized using one of several different conserved ubiquitin binding modules. Here, we report the crystal structure and ubiquitin binding properties of one such module, the ubiquitin-interacting motif (UIM). We found that UIM peptides from several proteins involved in endocytosis and vacuolar protein sorting including Hrs, Vps27p, Stam1, and Eps15 bound specifically, but with modest affinity (Kd = 0.1-1 mm), to free ubiquitin. Full affinity ubiquitin binding required the presence of conserved acidic patches at the N and C terminus of the UIM, as well as highly conserved central alanine and serine residues. NMR chemical shift perturbation mapping experiments demonstrated that all of these UIM peptides bind to the I44 surface of ubiquitin. The 1.45 A resolution crystal structure of the second yeast Vps27p UIM (Vps27p-2) revealed that the ubiquitin-interacting motif forms an amphipathic helix. Although Vps27p-2 is monomeric in solution, the motif unexpectedly crystallized as an antiparallel four-helix bundle, and the potential biological implications of UIM oligomerization are therefore discussed.  相似文献   

19.
BP-80, later renamed VSR(PS-1), is a putative receptor involved in sorting proteins such as proaleurain to the lytic vacuole, with its N-terminal domain recognizing the vacuolar sorting determinant. Although all VSR(PS-1) characteristics and in vitro binding properties described so far favored its receptor function, this function remained to be demonstrated. Here, we used green fluorescent protein (GFP) as a reporter in a yeast mutant strain defective for its own vacuolar receptor, Vps10p. By expressing VSR(PS-1) together with GFP fused to the vacuolar sorting determinant of petunia proaleurain, we were able to efficiently redirect the reporter to the yeast vacuole. VSR(PS-1) is ineffective on GFP either alone or when fused with another type of plant vacuolar sorting determinant from a chitinase. The plant VSR(PS-1) therefore interacts specifically with the proaleurain vacuolar sorting determinant in vivo, and this interaction leads to the transport of the reporter protein through the yeast secretory pathway to the vacuole. This finding demonstrates VSR(PS-1) receptor function but also emphasizes the differences in the spectrum of ligands between Vps10p and its plant equivalent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号