首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
S-Adenosylmethionine (SAM) was previously documented to activate secondary metabolism in a variety of Streptomyces spp. and to promote actinorhodin (ACT) and undecylprodigiosin (RED) in Streptomyces coelicolor. The SAM-induced proteins in S. coelicolor include several ABC transporter components (SCO5260 and SCO5477) including BldKB, the component of a well-known regulatory factor for differentiations. In order to assess the role of these ABC transporter complexes in differentiation of Streptomyces, SCO5260 and SCO5476, the first genes from the cognate complex clusters, were individually inactivated by gene replacement. Inactivation of either SCO5260 or SCO5476 led to impaired sporulation on agar medium, with the more drastic defect in the SCO5260 null mutant (ASCO5260). ASCO5260 displayed growth retardation and reduced yields of ACT and RED in liquid cultures. In addition, SAM supplementation failed in promoting the production of ACT and RED in ASCO5260. Inactivation of SCO5476 gave no significant change in growth and production of ACT and RED, but impaired the promoting effect of SAM on ACT production without interfering with the effect on RED production. The present study suggests that SAM induces several ABC transporters to modulate secondary metabolism and morphological development in S. coelicolor.  相似文献   

5.
6.
7.
The phosphopantetheinyl transferase genes SCO5883 (redU) and SCO6673 were disrupted in Streptomyces coelicolor. The redU mutants did not synthesize undecylprodigiosin, while SCO6673 mutants failed to produce calcium-dependent antibiotic. Neither gene was essential for actinorhodin production or morphological development in S. coelicolor, although their mutation could influence these processes.  相似文献   

8.
9.
In Streptomyces coelicolor, the sco2127 gene is located upstream of the gene encoding for glucose kinase. This region restores sensitivity to carbon catabolite repression (CCR) of Streptomyces peucetius var. caesius mutants, resistant to 2-deoxyglucose (Dog(R)). In order to search for the possible mechanisms behind this effect, sco2127 was overexpressed and purified for protein-protein interaction studies. SCO2127 was detected during the late growth phase of S. coelicolor grown in a complex media supplemented with 100 mM glucose. Pull-down assays using crude extracts from S. coelicolor grown in the same media, followed by far-western blotting, allowed detection of two proteins bound to SCO2127. The proteins were identified by MALDI-TOF mass spectrometry as SCO5113 and SCO2582. SCO5113 (BldKB) is a lipoprotein ABC-type permease (~66 kDa) involved in mycelium differentiation by allowing the transport of the morphogenic oligopeptide Bld261. SCO2582, is a putative membrane metalloendopeptidase (~44 kDa) of unknown function. In agreement with the possible role of SCO2127 in mycelium differentiation, delayed aerial mycelium septation and sporulation was observed when S. coelicolor A3(2) was grown in the presence of elevated glucose concentrations (100 mM), an effect not seen in a Δ-sco2127 mutant derived from it. We speculate that SCO2127 might represent a key factor in CCR of mycelium differentiation by interacting with BldKB.  相似文献   

10.
11.
12.
13.
14.
15.
Two-component systems (TCSs), typically consisting of a histidine kinase (HK) and a cognate response regulator (RR), are the most common signaling systems in bacteria. Besides paired genes encoding TCSs, there also exists unpaired HKs and orphan RRs. In Streptomyces coelicolor , 13 orphan RRs have been annotated. Because of lack of cognate HKs, little is known as yet about the regulation of orphan RRs. Bioinformatic analysis revealed that several orphan RRs had high amino acid sequence identities with RRs from typical TCSs in S. coelicolor . Among them, the orphan RR SCO3818 and RR SCO0204, which paired with HK SCO0203, showed the highest identity (65%), suggesting that the two RRs might both be under the regulation of SCO0203. Following studies showed that SCO0203 could phosphorylate not only SCO0204 but also SCO3818. Deletion of either sco0203 or sco3818 led to enhanced production of blue-pigmented antibiotic actinorhodin, which indicated a functional correlation between SCO0203 and SCO3818. These results suggested that SCO3818 might be regulated by SCO0203. This is the first report describing the regulation of an orphan RR by an HK. Moreover, this is also the first identification of cross-talk between different TCS components in S. coelicolor .  相似文献   

16.
17.
The objectives of the current studies were to determine the roles of key enzymes in central carbon metabolism in the context of increased production of antibiotics in Streptomyces coelicolor. Genes for glucose-6-phosphate dehydrogenase and phosphoglucomutase (Pgm) were deleted and those for the acetyl coenzyme A carboxylase (ACCase) were overexpressed. Under the conditions tested, glucose-6-phosphate dehydrogenase encoded by zwf2 plays a more important role than that encoded by zwf1 in determining the carbon flux to actinorhodin (Act), while the function of Pgm encoded by SCO7443 is not clearly understood. The pgm-deleted mutant unexpectedly produced abundant glycogen but was impaired in Act production, the exact reverse of what had been anticipated. Overexpression of the ACCase resulted in more rapid utilization of glucose and sharply increased the efficiency of its conversion to Act. From the current experiments, it is concluded that carbon storage metabolism plays a significant role in precursor supply for Act production and that manipulation of central carbohydrate metabolism can lead to an increased production of Act in S. coelicolor.  相似文献   

18.
In a proteasome-lacking mutant of Streptomyces coelicolor A3(2), an intracellular enzyme with chymotrypsin-like activity, absent from the wild type, was detected. Complementation that restored proteasome function did not suppress expression of the endopeptidase. Since the enzyme was not found in two other S. coelicolor proteasome mutants, its expression probably resulted from a secondary mutation arisen in the proteasome mutant. Purification of the endopeptidase revealed its identity to SCO7095, a putative hydrolase encoded by the S. coelicolor A3(2) genome with no known homologue. Based on the prediction of a Ser-Asp-His catalytic triad and an alpha/beta hydrolase fold, SCO7095 was assigned to peptidase clan SC. N-terminally His-tagged SCO7095 was efficiently expressed in Escherichia coli cells and purified for further characterization. Although SCO7095 is distantly related to several proline iminopeptidases, including Thermoplasma acidophilum tricorn-interacting F1, no aminopeptidase activity was detected. On synthetic substrates, the monomeric enzyme exhibited not only chymotrypsin-like activity but also thrombin-like activity.  相似文献   

19.
【背景】链霉菌属于放线菌科,在土壤环境中广泛分布。链霉菌具有复杂的形态分化和多样性的次生代谢网络,能产生大量具有生物活性的次级代谢产物,被广泛深入研究。【目的】天蓝色链霉菌是链霉菌的模式菌株,其脂肪酸合成代谢与次级代谢联系紧密,但目前脂肪酸合成代谢途径还不清楚,其长链3-酮脂酰ACP合成酶还未见报道。【方法】利用大肠杆菌FabF序列进行同源比对,发现天蓝色链霉菌A3(2)的基因组中,SCO2390(ScoFabF1)、SCO1266(ScoFabF2)、SCO0548(ScoFabF3)和SCO5886 (ScoRedR)具有较高的相似性,并具有保守的Cys-His-His催化活性中心,可能具有长链3-酮脂酰ACP合成酶活性。采用PCR扩增方法分别获得以上基因,连入表达载体pBAD24M后分别互补大肠杆菌fabB(ts)突变株和fabB(ts)fabF双突变株,并检测转化子的生长情况。以上基因与pET-28b连接后,在大肠杆菌BL21(DE3)中表达,并利用Ni-NTA纯化获得蛋白,体外测定其催化活性。将以上基因分别互补大肠杆菌fabF突变株后,GC-MS测定互补株的脂肪酸组成。【结果】4个同源基因中,只有ScofabF1能恢复fabB(ts)fabF双突变株42°C时在添加油酸条件下的生长,其他3个基因均不能恢复生长。而这4个基因都不能恢复fabB(ts)突变株42°C时生长。体外活性测定ScoFabF1具有长链3-酮脂酰ACP合成酶活性,其他3个蛋白都不具有该活性。仅ScofabF1能显著提高大肠杆菌fabF突变株的顺-11-十八碳烯酸(C18:1)比例,其他3个基因都不具有该功能。【结论】天蓝色链霉菌中ScofabF1编码长链3-酮脂酰ACP合成酶II,在脂肪酸利用过程中发挥重要作用。天蓝色链霉菌中没有发现编码长链3-酮脂酰ACP合成酶I的基因,其可能通过其他途径合成少量的不饱和脂肪酸。以上研究结果为进一步研究天蓝色链霉菌中脂肪酸合成机制奠定了基础。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号