首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sphingosine-1-phosphate (S1P) receptors are widely expressed in the central nervous system where they are thought to regulate glia cell function. The phosphorylated version of fingolimod/FTY720 (FTY720P) is active on a broad spectrum of S1P receptors and the parent compound is currently in phase III clinical trials for the treatment of multiple sclerosis. Here, we aimed to identify which cell type(s) and S1P receptor(s) of the central nervous system are targeted by FTY720P. Using calcium imaging in mixed cultures from embryonic rat cortex we show that astrocytes are the major cell type responsive to FTY720P in this assay. In enriched astrocyte cultures, we detect expression of S1P1 and S1P3 receptors and demonstrate that FTY720P activates Gi protein-mediated signaling cascades. We also show that FTY720P as well as the S1P1-selective agonist SEW2871 stimulate astrocyte migration. The data indicate that FTY720P exerts its effects on astrocytes predominantly via the activation of S1P1 receptors, whereas S1P signals through both S1P1 and S1P3 receptors. We suggest that this distinct pharmacological profile of FTY720P, compared with S1P, could play a role in the therapeutic effects of FTY720 in multiple sclerosis.  相似文献   

2.
3.
4.
The typical pathological feature of atherosclerosis is inflammation. In the last years, it has become evident that inhibition of inflammation is one important therapeutic option in atherosclerosis. Recently, sphingolipid sphingosine-1-phosphate (S1P) was identified as a crucial molecule with potent anti-inflammatory properties. Indeed, S1P activates various G protein-coupled receptors, namely S1P1-S1P5. In the vasculature, mainly S1P1-3 receptors are present. FTY720, after phosphorylation to FTY720-P, is an orally active S1P mimetic. FTY720 has been developed for therapy in the field of autoimmune diseases and organ transplantation. In analogy to S1P, FTY720 shows potent anti-inflammatory effects and several groups have tested the in vivo effects of FTY720 on the progression of inflammatory vascular diseases. They could show that S1P receptor activation might lead to a partial inhibition of the progression of atherosclerotic lesions. S1P receptor activation therefore might be a concept for anti-inflammatory drug treatment. However, it is not clear how S1P and FTY720 exactly act on vascular inflammation. This review article gives a brief overview over the known actions of S1P in vascular inflammatory disease.  相似文献   

5.
FTY720, a potent immunosuppressive agent, is phosphorylated in vivo into FTY720-P, a high affinity agonist for sphingosine 1-phosphate (S1P) receptors. The effects of FTY720 on vascular cells, a major target of S1P action, have not been addressed. We now report the metabolic activation of FTY720 by sphingosine kinase-2 and potent activation of vascular endothelial cell functions in vitro and in vivo by phosphorylated FTY720 (FTY720-P). Incubation of endothelial cells with FTY720 resulted in phosphorylation by sphingosine kinase activity and formation of FTY720-P. Sphingosine kinase-2 effectively phosphorylated FTY720 in the human embryonic kidney 293T heterologous expression system. FTY720-P treatment of endothelial cells stimulated extracellular signal-activated kinase and Akt phosphorylation and adherens junction assembly and promoted cell survival. The effects of FTY720-P were inhibited by pertussis toxin, suggesting the requirement for Gi-coupled S1P receptors. Indeed, transmonolayer permeability induced by vascular endothelial cell growth factor was potently reversed by FTY720-P. Furthermore, oral FTY720 administration in mice potently blocked VEGF-induced vascular permeability in vivo. These findings suggest that FTY720 or its analogs may find utility in the therapeutic regulation of vascular permeability, an important process in angiogenesis, inflammation, and pathological conditions such as sepsis, hypoxia, and solid tumor growth.  相似文献   

6.
FTY720 has been originally developed as a new immunosuppressive agent, which prolongs graft survival in organ transplantation. Adrenomedullin (AM) participates in the regulation of sodium homeostasis and has renoprotective effects. The possible involvement of renal AM in the pathophysiology of glomerulonephritis (GN) and the effect of FTY720 has been evaluated in rats. HgCl2 (1 mg/kg body weight) was inoculated subcutaneously 3 times/week for a total of 2 weeks. FTY720 (3 or 10 mg/kg) was inoculated subcutaneously daily. The proteinuria, urinary N-acetyl-beta-D-glucosaminidase (NAG) excretion and serum total cholesterol levels were increased and serum albumin level was reduced in rats with HgCl2-induced GN compared with controls. FTY720 reduced proteinuria (3 mg/kg: -25%; 10 mg/kg: -41%), urinary NAG excretion (-11%; -52%) and total cholesterol level (-21%; -55%) in a dose-dependent manner. Renal AM level and its mRNA expression were increased in rats with GN compared with controls (Peptide Cortex: +69%; Medulla: +82%; mRNA Cortex: +25%). Interestingly, FTY720 additionally increased these levels (Peptide Cortex: +38%; Medulla: +39%; mRNA Cortex: +20%). Renal AM levels correlated with urinary NAG excretion and creatinine clearance. These results suggest that FTY720 suppresses the renal damage in rats with GN and renal AM may participate in the pathophysiology of GN and the renoprotective effects of FTY720.  相似文献   

7.
Sphingosine 1-phosphate (S1P) is a pleiotropic lysophospholipid mediator involved in many cellular responses, including transient calcium mobilization, activation of MAP kinase signaling, inhibition of adenylyl cyclase and increased cell migration. S1P has been shown to be an effective activator of vascular endothelial cells via the interaction with cell surface G protein-coupled receptors (GPCRs), namely S1P-R (formerly EDG-R). The potent immunomodulator, FTY720, is phosphorylated by sphingosine kinase (SK) to FTY720-P. Recently it was shown that FTY720-P, not FTY720, can bind to four out of five of the S1P-R. In the present study, we evaluated the effects of FTY720, FTY720-P, and analogues of FTY720-P: an active (R)-enantiomer [AFD(R)] and an inactive (S)-enantiomer [AFD(S)], on endothelial cell functions. Treatment of HUVEC with FTY720-P, but not FTY720, lead to a robust transient increase in calcium mobilization, detected using the fluorometric imaging plate reader (FLIPR) assay. Additionally, only the phosphorylated derivative (FTY720-P) stimulated MAPK activation. We also observed complementary activities of S1P and FTY720-P in an established in vitro endothelial morphogenesis (Matrigel tube formation) assay and an in vitro endothelial cell migration assay. Using a potent inhibitor of sphingosine kinase, N,N-dimethylsphingosine (DMS), FTY720's effects were inhibited in the migration assay, suggesting that FTY720-P is the active mediator. The effects of FTY720-P in these assays were inhibited by pre-treatment with PTx (pertussis toxin), indicating the requirement of a Gi-coupled S1P receptor. These findings suggest that agonist of S1P-R are able to regulate important endothelial cell properties, which may lead to a greater insight into vascular functions.  相似文献   

8.
The sphingolipid metabolite sphingosine 1-phosphate (S1P) plays an essential function in the egress of T cells from the thymus and secondary lymphoid organs. The novel immunomodulating agent FTY720 is phosphorylated in vivo to the functional form FTY720 phosphate (FTY720-P), which is structurally similar to S1P. FTY720-P inhibits the S1P-mediated T cell egress as an agonist of S1P receptors. FTY720-P is not stable in plasma and is dephosphorylated to FTY720. In the present study, we investigated activities toward FTY720-P of LPP family members (LPP1, LPP1a, LPP2, and LPP3), which exhibit broad substrate specificity. Of the four, LPP1a, the splicing isoform of LPP1, had the highest activity toward FTY720-P, and the highest affinity. Among blood-facing cells tested, only endothelial cells displayed high phosphatase activity for FTY720-P. Significant levels of LPP1a expression were found in endothelial cells, suggesting that LPP1a is important for the dephosphorylation of FTY720-P in plasma.  相似文献   

9.
We investigated whether plasma long-chain sphingoid base (LCSB) concentrations are altered by transient cardiac ischemia during percutaneous coronary intervention (PCI) in humans and examined the signaling through the sphingosine-1-phosphate (S1P) cascade as a mechanism underlying the S1P cardioprotective effect in cardiac myocytes. Venous samples were collected from either the coronary sinus (n = 7) or femoral vein (n = 24) of 31 patients at 1 and 5 min and 12 h, following induction of transient myocardial ischemia during elective PCI. Coronary sinus levels of LCSB were increased by 1,072% at 1 min and 941% at 5 min (n = 7), while peripheral blood levels of LCSB were increased by 579% at 1 min, 617% at 5 min, and 436% at 12 h (n = 24). In cultured cardiac myocytes, S1P, sphingosine (SPH), and FTY720, a sphingolipid drug candidate, showed protective effects against CoCl induced hypoxia/ischemic cell injury by reducing lactate dehydrogenase activity. Twenty-five nanomolars of FTY720 significantly increased phospho-Pak1 and phospho-Akt levels by 56 and 65.6% in cells treated with this drug for 15 min. Further experiments demonstrated that FTY720 triggered nitric oxide release from cardiac myocytes is through pertussis toxin-sensitive phosphatidylinositol 3-kinase/Akt/endothelial nitric oxide synthase signaling. In ex vivo hearts, ischemic preconditioning was cardioprotective in wild-type control mice (Pak1(f/f)), but this protection appeared to be ineffective in cardiomyocyte-specific Pak1 knockout (Pak1(cko)) hearts. The present study provides the first direct evidence of the behavior of plasma sphingolipids following transient cardiac ischemia with dramatic and early increases in LCSB in humans. We also demonstrated that S1P, SPH, and FTY720 have protective effects against hypoxic/ischemic cell injury, likely a Pak1/Akt1 signaling cascade and nitric oxide release. Further study on a mouse model of cardiac specific deletion of Pak1 demonstrates a crucial role of Pak1 in cardiac protection against ischemia/reperfusion injury.  相似文献   

10.
The Na+/K+ ATPase modulates the activity of many transporters in the liver, and maintains the ionic constancy of the intracellular milieu, preserving thus normal functioning of hepatocytes. Previous work showed that FTY720P, a sphingosine one phosphate receptor agonist used in the treatment of multiple sclerosis, exerts in HepG2 cells, an inhibitory effect on the activity of the ATPase, mediated via PGE2. This study is an attempt to identify the signaling molecules involved downstream of the prostaglandin. The activity of the ATPase was assayed by measuring the amount of inorganic phosphate liberated in presence and absence of ouabain, a specific inhibitor of the enzyme. The effect of FTY720P and PGE2 disappeared completely in presence of PF-04418948, a blocker of EP2 receptors, RpcAMP, an inhibitor of PKA, PD98059, an inhibitor of ERK, as well as in presence of PTIO, a nitric oxide synthase inhibitor, but was mimicked by butaprost, an EP2 agonist, dbcAMP, a cell permeable cAMP analogue, and SNAP1,a nitric oxide generator. PGE2 and dbcAMP increased the expression of phosphorylated ERK but not total ERK. This increase did not appear however in presence of PTIO, indicating that PKA is upstream of NO. It was concluded that FTY 720P induces PGE2 release which activates NOS leading to NO production and ERK activation. ERK then inhibits directly or indirectly the Na+/K+ ATPase.  相似文献   

11.
The bioactive lipid molecule sphingosine 1-phosphate (S1P) binds to specific cell surface receptors and regulates several cellular processes. S1P is abundant in plasma, and physiologically its most important target cells are lymphocytes and vascular endothelial cells. S1P plays a pivotal role in the immune system by regulating lymphocyte egress from the thymus and secondary lymphoid organs. The immunomodulator FTY720 impairs this egress, causing lymphopenia. Platelets had long been considered to be the major source of plasma S1P, however recent studies revealed the importance of erythrocytes as a major supply. The sphingosine analog FTY720 is a prodrug, and FTY720 phosphate (FTY720-P) its functional form. Although both erythrocytes and platelets can produce S1P, only platelets synthesize and release FTY720-P. This review will focus on the recent advances in our understanding of the metabolism and release of S1P and FTY720-P, especially in platelets and erythrocytes.  相似文献   

12.
Sphingosine 1-phosphate (S1P) signaling in the treatment of multiple sclerosis (MS) has been highlighted by the efficacy of FTY720 (fingolimod), which upon phosphorylation can modulate S1P receptor activities. FTY720 has become the first oral treatment for relapsing MS that was approved by the FDA in September 2010. Phosphorylated FTY720 modulates four of the five known S1P receptors (S1P(1), S1P(3), S1P(4), and S1P(5)) at high affinity. Studies in human MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have revealed that FTY720 exposure alters lymphocyte trafficking via sequestration of auto-aggressive lymphocytes within lymphoid organs, representing the current understanding of its mechanism of action. These effects primarily involve S1P(1), which is thought to attenuate inflammatory insults in the central nervous system (CNS). In addition, FTY720's actions may involve direct effects on S1P receptor-mediated signaling in CNS cells, based upon the known expression of S1P receptors in CNS cell types relevant to MS, access to the CNS through the blood-brain barrier (BBB), and in vitro studies. These data implicate lysophospholipid signaling--via S1P(1) and perhaps other lysophospholipid receptors--in therapeutic approaches to MS and potentially other diseases with immunological and/or neurological components.  相似文献   

13.
14.
The sphingosine‐1‐phosphate (S1P) receptor modulator, fingolimod (FTY720), has been used for the treatment of patients with relapsing forms of multiple sclerosis, but atrioventricular (AV) conduction block have been reported in some patients after the first dose. The underlying mechanism of this AV node conduction blockade is still not well‐understood. In this study, we hypothesize that expression of this particular arrhythmia might be related to a direct effect of FTY720 on AV node rather than a parasympathetic mimetic action. We, therefore, investigated the effect of FTY720 on AV nodal, using in vitro rat model preparation, under both basal as well as ischaemia/reperfusion conditions. We first look at the expression pattern of S1P receptors on the AV node using real‐time PCR. Although all three S1P receptor isoforms were expressed in AVN tissues, S1P1 receptor isoform expression level was higher than S1P2 and S1P3. The effect of 25 nM FTY720 on cycle length (CL) was subsequently studied via extracellular potentials recordings. FTY720 caused a mild to moderate prolongation in CL by an average 9% in AVN (n = 10, P < 0.05) preparations. We also show that FTY720 attenuated both ischaemia and reperfusion induced AVN rhythmic disturbance. To our knowledge, these remarkable findings have not been previously reported in the literature, and stress the importance for extensive monitoring period in certain cases, especially in patients taking concurrently AV node blocker agents.  相似文献   

15.
The sphingosine 1-phosphate (S1P) receptor agonist FTY720 is well known for its immunomodulatory activity, sequestering lymphocytes from blood and spleen into secondary lymphoid organs and thereby preventing their migration to sites of inflammation. Because inflammation is critically dependent on a balance between Ag-specific Th/effector cells and T-regulatory cells, we investigated the effect of FTY720 on T-regulatory cell trafficking and functional activity. An increased number of CD4+/CD25+ T cells was found in blood and spleens of FTY720-treated mice, and transfer of these cells resulted in a significantly more pronounced accumulation in spleens but not lymph nodes after treatment, suggesting that this compound differentially affects the homing properties of T-regulatory cells compared with other T cell subsets. Indeed, CD4+/CD25+ T cells express lower levels of S1P1 and S1P4 receptors and demonstrate a reduced chemotactic response to S1P. Moreover, analysis of the functional response of FTY720-treated CD4+/CD25+ T cells revealed an increased suppressive activity in an in vitro Ag-specific proliferation assay. This correlated with enhanced function in vivo, with T-regulatory cells obtained from FTY720-treated mice being able to suppress OVA-induced airway inflammation. Thus, FTY720 differentially affects the sequestration of T-regulatory cells and importantly, increases the functional activity of T-regulatory cells, suggesting that it may have disease-modifying potential in inflammatory disorders.  相似文献   

16.
FTY720 phosphate (FTY720P) is a high potency agonist for all the endothelial differentiation gene family sphingosine 1-phosphate (S1P) receptors except S1P receptor subtype 2 (S1P(2)). To map the distinguishing features of S1P(2) ligand recognition, we applied a computational modeling-guided mutagenesis strategy that was based on the high degree of sequence homology between S1P(1) and S1P(2). S1P(2) point mutants of the ligand-binding pocket were characterized. The head group-interacting residues Arg3.28, Glu3.29, and Lys7.34 were essential for activation. Mutation of residues Ala3.32, Leu3.36, Val5.41, Phe6.44, Trp6.48, Ser7.42, and Ser7.46, predicted to interact with the S1P hydrophobic tail, impaired activation by S1P. Replacing individual or multiple residues in the ligand-binding pocket of S1P(2) with S1P(1) sequence did not impart activation by FTY720P. Chimeric S1P(1)/S1P(2) receptors were generated and characterized for activation by S1P or FTY720P. The S1P(2) chimera with S1P(1) sequence from the N terminus to transmembrane domain 2 (TM2) was activated by FTY720P, and the S1P(2)(IC1-TM2)(S1P1) domain insertion chimera showed S1P(1)-like activation. Twelve residues in this domain, distributed in four motifs a-d, differ between S1P(1) and S1P(2). Insertion of (78)RPMYY in motif b alone or simultaneous swapping of five other residues in motifs c and d from S1P(1) into S1P(2) introduced FTY720P responsiveness. Molecular dynamics calculations indicate that FTY720P binding selectivity is a function of the entropic contribution to the binding free energy rather than enthalpic contributions and that preferred agonists retain substantial flexibility when bound. After exposure to FTY720P, the S1P(2)(IC1-TM2)(S1P1) receptor recycled to the plasma membrane, indicating that additional structural elements are required for the selective degradative trafficking of S1P(1).  相似文献   

17.
FTY720, a sphingosine 1-phosphate (S1P) analog, acts as an immunosuppressant through trapping of T cells in secondary lymphoid tissues. FTY720 was also shown to prevent tumor growth and to inhibit vascular permeability. The MTT proliferation assay illustrated that endothelial cells are more susceptible to the anti-proliferative effect of FTY720 than Lewis lung carcinoma (LLC1) cells. In a spheroid angiogenesis model, FTY720 potently inhibited the sprouting activity of VEGF-A-stimulated endothelial cells even at concentrations that apparently had no anti-proliferative effect. Mechanistically, the anti-angiogenic effect of the general S1P receptor agonist FTY720 was mimicked by the specific S1P1 receptor agonist SEW2871. Moreover, the anti-angiogenic effect of FTY720 was abrogated in the presence of CXCR4-neutralizing antibodies. This indicates that the effect was at least in part mediated by the S1P1 receptor and involved transactivation of the CXCR4 chemokine receptor. Additionally, we could illustrate in a coculture spheroid model, employing endothelial and smooth muscle cells (SMCs), that the latter confer a strong protective effect regarding the action of FTY720 upon the endothelial cells. In a subcutaneous LLC1 tumor model, the anti-angiogenic capacity translated into a reduced tumor size in syngeneic C57BL/6 mice. Consistently, in the Matrigel plug in vivo assay, 10 mg/kg/d FTY720 resulted in a strong inhibition of angiogenesis as demonstrated by a reduced capillary density. Thus, in organ transplant patients, FTY720 may prove efficacious in preventing graft rejection as well as tumor development.  相似文献   

18.
FTY720 (2-amino-[2-(4-octylphenyl) ethyl]-1,3-propanediol hydrochloride) is an immunosuppressive agent that inhibits allograft rejection. We recently demonstrated that FTY-phosphate, the active metabolite of FTY720, acts as a full agonist for sphingosine-1-phosphate (S1P) receptors. Furthermore, activation of S1P receptors with their natural ligand, S1P, as well as pharmacological ligands leads to lymphopenia, probably due to sequestration of lymphocytes in secondary lymphoid organs. In the present study we used a local Ag-challenged mouse model to examine the effects of FTY720 on T cell activation in the draining lymph node (DLN) and on the release of activated T cells to the peripheral blood compartment. We showed that the number of Ag-activated CD4(+) T cells in the DLN after injection of Ag and CFA into a footpad was dramatically reduced after FTY720 treatment. However, T cell proliferation, both in vitro and in vivo, was not impaired by FTY720. Our results suggest that the reduced efficiency of T cell responses in the DLN in response to a local Ag is probably due to a defective recirculation of naive T cells caused by FTY720 treatment. Furthermore, we found that the numbers of naive and Ag-activated CD4(+) T cells in the peripheral blood of Ag-challenged mice were equally reduced with FTY720 treatment, suggesting that both T cell subsets are sequestered in the DLNs. Thus, FTY720 induces immunosuppression through inhibition of both the recirculation of naive T cells and the release of Ag-activated T cells from the DLN to lymph and to the blood compartment.  相似文献   

19.
The effect of renal function of an augmentation of the excretory renal mass was investigated in 10 dogs without drug treatment and in 10 animals with alpha-receptor blockade. In the untreated group, augmentation of excretory renal mass by transplantation into the neck of one pair of kidneys isolated from another animal caused the following changes in the kidneys in situ: marked elevation in CPAH, slight decrease in Cinulin, slight diminution of urine excretion and a pronounced fall in sodium excretion. The amount of urine and sodium excreted by the four kidneys was identical with that previously excreted by the two kidneys in situ. In animals with alpha-receptor blockade, augmentation of the excretory renal mass had the following consequences in the in situ kidneys, CPAH, and Cinulin remained unchanged while urine and sodium excretion decreased to the same extent as in the untreated control group. The amount of urine and of sodium excreted by the four kidneys was the same as that excreted by the kidneys in situ, prior to transplantation of isolated kidneys, i.e. before the augmentation of excretory renal mass. It seems that the decrease in sodium excretion of the kidneys in situ was not due to the haemodynamic changes evoked by the load on the circulation; it was rather consequence of some quick, presumably humoral, regulation. The diminution of sodium excretion in the kidneys in situ after augmentation of the excretory renal mass has been ascribed to an increased utilization by the four kidneys of the natriuretic factor(s), i.e. to a diminution in the plasma level of the natriuretic hormone.  相似文献   

20.
Constrained azacyclic analogues of FTY720 were prepared starting with d- and l-pyroglutamic acids. One enantiomer was shown to be a substrate for sphingosine kinase 2, being phosphorylated 4-fold more efficiently than FTY720. Among the corresponding phosphates, two were found to have unusual specificity in binding to S1P receptors: while being inactive on S1P1 and S1P3, they acted as potent agonists on S1P4 and S1P5. The phosphates may be useful to explore the biology and binding site of these receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号