首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Critical role of PIP5KI{gamma}87 in InsP3-mediated Ca(2+) signaling   总被引:2,自引:0,他引:2  
Wang YJ  Li WH  Wang J  Xu K  Dong P  Luo X  Yin HL 《The Journal of cell biology》2004,167(6):1005-1010
Phosphatidylinositol 4,5-bisphosphate (PIP(2)) is the obligatory precursor of inositol 1,4,5-trisphosphate (InsP(3) or IP(3)) and is therefore critical to intracellular Ca(2+) signaling. Using RNA interference (RNAi), we identified the short splice variant of type I phosphatidylinositol 4-phosphate 5-kinase gamma (PIP5KIgamma87) as the major contributor of the PIP(2) pool that supports G protein-coupled receptor (GPCR)-mediated IP(3) generation. PIP5KIgamma87 RNAi decreases the histamine-induced IP(3) response and Ca(2+) flux by 70%. Strikingly, RNAi of other PIP5KI isoforms has minimal effect, even though some of these isoforms account for a larger percent of total PIP(2) mass and have previously been implicated in receptor mediated endocytosis or focal adhesion formation. Therefore, PIP5KIgamma87's PIP(2) pool that supports GPCR-mediated Ca(2+) signaling is functionally compartmentalized from those generated by the other PIP5KIs.  相似文献   

2.
Phosphatidylinositol-4,5-bisphosphate (PIP2) is a key player in the neurotransmitter release process. Rabphilin-3A is a neuronal C2 domain tandem containing protein that is involved in this process. Both its C2 domains (C2A and C2B) are able to bind PIP2. The investigation of the interactions of the two C2 domains with the PIP2 headgroup IP3 (inositol-1,4,5-trisphosphate) by NMR showed that a well-defined binding site can be described on the concave surface of each domain. The binding modes of the two domains are different. The binding of IP3 to the C2A domain is strongly enhanced by Ca(2+) and is characterized by a K(D) of 55 microM in the presence of a saturating concentration of Ca(2+) (5 mM). Reciprocally, the binding of IP3 increases the apparent Ca(2+)-binding affinity of the C2A domain in agreement with a Target-Activated Messenger Affinity (TAMA) mechanism. The C2B domain binds IP3 in a Ca(2+)-independent fashion with low affinity. These different PIP2 headgroup recognition modes suggest that PIP2 is a target of the C2A domain of rabphilin-3A while this phospholipid is an effector of the C2B domain.  相似文献   

3.
In pancreatic acinar cells stimulation of different intracellular pathways leads to different patterns of Ca2+ signaling. Bombesin induces activation of both phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phospholipase C (PLC) and phospholipase D (PLD). The latter leads to generation of diacylglycerol (DAG) in addition to that produced by activation of PIP2-PLC. Strong activation of protein kinase C (PKC) results in inhibition of Ca(2+)-induced Ca2+ release from Ca2+ pools arranged in sequence to the luminally located IP3-sensitive Ca2+ pools. Consequently the Ca2+ wave which starts in the luminal cell pole is slower in the presence of bombesin (5 microm/s) as compared to that in the presence of acetylcholine (17 microm/s) which activates PIP2-PLC but not PLD. Activation of high-affinity CCK-receptors triggers a Ca2+ wave with slow propagation (5 microm/s) due to stimulation of phospholipase A2 (PLA2) and generation of arachidonic acid, which in turn leads to inhibition of Ca(2+)-induced Ca2+ release. Low-affinity CCK-receptors are coupled to both PIP2-PLC and PLD.  相似文献   

4.
The role of calcium (Ca(2+)) in cytokinesis is controversial, and the precise pathways that lead to its release during cleavage are not well understood. Ca(2+) is released from intracellular stores by binding of inositol trisphosphate (IP3) to the IP3 receptor (IP3R), yet no clear role in cytokinesis has been established for the precursor of IP3, phosphatidylinositol 4,5-bisphosphate (PIP2). Here, using transgenic flies expressing PLCdelta-PH-GFP, which specifically binds PIP2, we identify PIP2 in the plasma membrane and cleavage furrows of dividing Drosophila melanogaster spermatocytes, and we establish that this phospholipid is required for continued ingression but not for initiation of cytokinesis. In addition, by inhibiting phospholipase C, we show that PIP2 must be hydrolyzed to maintain cleavage furrow stability. Using an IP3R antagonist and a Ca(2+) chelator to examine the roles of IP3R and Ca(2+) in cytokinesis, we demonstrate that both of these factors are required for cleavage furrow stability, although Ca(2+) is dispensable for cleavage plane specification and initiation of furrowing. Strikingly, providing cells with Ca(2+) obviates the need to hydrolyze PIP2. Thus, PIP2, PIP2 hydrolysis, and Ca(2+) are required for the normal progression of cytokinesis in these cells.  相似文献   

5.
Phosphatidylinositol 4,5-bisphosphate (PIP(2)) regulates Ca(2+) (I(Ca)) and M-type K(+) currents in superior cervical ganglion sympathetic neurons. In those cells, M(1) muscarinic and AT(1) angiotensin types do not elicit Ca(2+)(i) signals and suppress both currents via depletion of PIP(2), whereas the B(2) bradykinin and P2Y purinergic types elicit robust IP(3)-mediated [Ca(2+)](i) rises and neither deplete PIP(2) nor inhibit I(Ca). We have suggested that this specificity arises from differential Ca(2+)(i) signals underlying receptor-specific stimulation of PIP(2) synthesis by phosphatidylinositol (PI) 4-kinase. Here, we investigate which PI 4-kinase isoform underlies this signal, whether stimulation of PI 4-phosphate 5-kinase is also required, and the origin of receptor-specific Ca(2+)(i) signals. Recordings of I(Ca) were used as a PIP(2) "biosensor." In control, stimulation of M(1), but not B(2) or P2Y, receptors robustly suppressed I(Ca). However, when PI 4-kinase IIIβ, diacylglycerol kinase, Rho, or Rho-kinase was blocked, agonists of all three receptors robustly suppressed I(Ca). Overexpression of exogenous M(1) receptors yielded large [Ca(2+)](i) rises by muscarinic agonist, and transfection of wild-type IRBIT decreased Ca(2+)(i) signals, whereas dominant negative IRBIT-S68A had little effect on B(2) or P2Y responses but greatly increased muscarinic responses. We conclude that overlaid on microdomain organization is IRBIT, setting a "threshold" for [IP(3)], assisting in fidelity of receptor specificity.  相似文献   

6.
Synaptotagmin-1 is the main Ca(2+) sensor of neuronal exocytosis. It binds to both Ca(2+) and the anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP(2)), but the precise cooperativity of this binding is still poorly understood. Here, we used microscale thermophoresis to quantify the cooperative binding of PIP(2) and Ca(2+) to synaptotagmin-1. We found that PIP(2) bound to the well conserved polybasic patch of the C2B domain with an apparent dissociation constant of ~20 μM. PIP(2) binding reduced the apparent dissociation constant for Ca(2+) from ~250 to <5 μM. Thus, our data show that PIP(2) makes synaptotagmin-1 >40-fold more sensitive to Ca(2+). This interplay between Ca(2+), synaptotagmin-1, and PIP(2) is crucial for neurotransmitter release.  相似文献   

7.
Cellular signaling mediated by inositol (1,4,5)trisphosphate (Ins(1, 4,5)P(3)) results in oscillatory intracellular calcium (Ca(2+)) release. Because the amplitude of the Ca(2+) spikes is relatively invariant, the extent of the agonist-mediated effects must reside in their ability to regulate the oscillating frequency. Using electroporation techniques, we show that Ins(1,4,5)P(3), Ins(1,3,4, 5)P(4), and Ins(1,3,4,6)P(4) cause a rapid intracellular Ca(2+) release in resting HeLa cells and a transient increase in the frequency of ongoing Ca(2+) oscillations stimulated by histamine. Two poorly metabolizable analogs of Ins(1,4,5)P(3), Ins(2,4,5)P(3), and 2,3-dideoxy-Ins(1,4,5)P(3), gave a single Ca(2+) spike and failed to alter the frequency of ongoing oscillations. Complete inhibition of Ins(1,4,5)P(3) 3-kinase (IP3K) by either adriamycin or its specific antibody blocked Ca(2+) oscillations. Partial inhibition of IP3K causes a significant reduction in frequency. Taken together, our results indicate that Ins(1,3,4,5)P(4) is the frequency regulator in vivo, and IP3K, which phosphorylates Ins(1,4, 5)P(3) to Ins(1,3,4,5)P(4), plays a major regulatory role in intracellular Ca(2+) oscillations.  相似文献   

8.
TRP family of proteins are components of unique cation channels that are activated in response to diverse stimuli ranging from growth factor and neurotransmitter stimulation of plasma membrane receptors to a variety of chemical and sensory signals. This review will focus on members of the TRPC sub-family (TRPC1-TRPC7) which currently appear to be the strongest candidates for the enigmatic Ca(2+) influx channels that are activated in response to stimulation of plasma membrane receptors which result in phosphatidyl inositol-(4,5)-bisphosphate (PIP(2)) hydrolysis, generation of IP(3) and DAG, and IP(3)-induced Ca(2+) release from the intracellular Ca(2+) store via inositol trisphosphate receptor (IP(3)R). Homomeric or selective heteromeric interactions between TRPC monomers generate distinct channels that contribute to store-operated as well as store-independent Ca(2+) entry mechanisms. The former is regulated by the emptying/refilling of internal Ca(2+) store(s) while the latter depends on PIP(2) hydrolysis (due to changes in PIP(2) per se or an increase in diacylglycerol, DAG). Although the exact physiological function of TRPC channels and how they are regulated has not yet been conclusively established, it is clear that a variety of cellular functions are controlled by Ca(2+) entry via these channels. Thus, it is critical to understand how cells coordinate the regulation of diverse TRPC channels to elicit specific physiological functions. It is now well established that segregation of TRPC channels mediated by interactions with signaling and scaffolding proteins, determines their localization and regulation in functionally distinct cellular domains. Furthermore, both protein and lipid components of intracellular and plasma membranes contribute to the organization of these microdomains. Such organization serves as a platform for the generation of spatially and temporally dictated [Ca(2+)](i) signals which are critical for precise control of downstream cellular functions.  相似文献   

9.
Ca(2+)-permeable cation channels consisting of canonical transient receptor potential 1 (TRPC1) proteins mediate Ca(2+) influx pathways in vascular smooth muscle cells (VSMCs), which regulate physiological and pathological functions. We investigated properties conferred by TRPC1 proteins to native single TRPC channels in acutely isolated mesenteric artery VSMCs from wild-type (WT) and TRPC1-deficient (TRPC1(-/-)) mice using patch-clamp techniques. In WT VSMCs, the intracellular Ca(2+) store-depleting agents cyclopiazonic acid (CPA) and 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM) both evoked channel currents, which had unitary conductances of ~2 pS. In TRPC1(-/-) VSMCs, CPA-induced channel currents had 3 subconductance states of 14, 32, and 53 pS. Passive depletion of intracellular Ca(2+) stores activated whole-cell cation currents in WT but not TRPC1(-/-) VSMCs. Differential blocking actions of anti-TRPC antibodies and coimmunoprecipitation studies revealed that CPA induced heteromeric TRPC1/C5 channels in WT VSMCs and TRPC5 channels in TRPC1(-/-) VSMCs. CPA-evoked TRPC1/C5 channel activity was prevented by the protein kinase C (PKC) inhibitor chelerythrine. In addition, the PKC activator phorbol 12,13-dibutyrate (PDBu), a PKC catalytic subunit, and phosphatidylinositol-4,5-bisphosphate (PIP(2)) and phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) activated TRPC1/C5 channel activity, which was prevented by chelerythrine. In contrast, CPA-evoked TRPC5 channel activity was potentiated by chelerythrine, and inhibited by PDBu, PIP(2), and PIP(3). TRPC5 channels in TRPC1(-/-) VSMCs were activated by increasing intracellular Ca(2+) concentrations ([Ca(2+)](i)), whereas increasing [Ca(2+)](i) had no effect in WT VSMCs. We conclude that agents that deplete intracellular Ca(2+) stores activate native heteromeric TRPC1/C5 channels in VSMCs, and that TRPC1 subunits are important in determining unitary conductance and conferring channel activation by PKC, PIP(2), and PIP(3).  相似文献   

10.
IP(3)-dependent Ca(2+) signaling controls a myriad of cellular processes in higher eukaryotes and similar signaling pathways are evolutionarily conserved in Plasmodium, the intracellular parasite that causes malaria. We have reported that isolated, permeabilized Plasmodium chabaudi, releases Ca(2+) upon addition of exogenous IP(3). In the present study, we investigated whether the IP(3) signaling pathway operates in intact Plasmodium falciparum, the major disease-causing human malaria parasite. P. falciparum-infected red blood cells (RBCs) in the trophozoite stage were simultaneously loaded with the Ca(2+) indicator Fluo-4/AM and caged-IP(3). Photolytic release of IP(3) elicited a transient Ca(2+) increase in the cytosol of the intact parasite within the RBC. The intracellular Ca(2+) pools of the parasite were selectively discharged, using thapsigargin to deplete endoplasmic reticulum (ER) Ca(2+) and the antimalarial chloroquine to deplete Ca(2+) from acidocalcisomes. These data show that the ER is the major IP(3)-sensitive Ca(2+) store. Previous work has shown that the human host hormone melatonin regulates P. falciparum cell cycle via a Ca(2+)-dependent pathway. In the present study, we demonstrate that melatonin increases inositol-polyphosphate production in intact intraerythrocytic parasite. Moreover, the Ca(2+) responses to melatonin and uncaging of IP(3) were mutually exclusive in infected RBCs. Taken together these data provide evidence that melatonin activates PLC to generate IP(3) and open ER-localized IP(3)-sensitive Ca(2+) channels in P. falciparum. This receptor signaling pathway is likely to be involved in the regulation and synchronization of parasite cell cycle progression.  相似文献   

11.
NMDA receptor activation leads to clathrin-dependent endocytosis of postsynaptic AMPA receptors. Although this process controls long-term depression (LTD) induction in the hippocampus, how it is regulated by neuronal activities is not completely clear. Here, we show that Ca2? influx through the NMDA receptor activates calcineurin and protein phosphatase 1 to dephosphorylate phosphatidylinositol 4-phosphate 5-kinaseγ661 (PIP5Kγ661), the major phosphatidylinositol 4,5-bisphosphate (PI(4,5)P?)-producing enzyme in the brain. Bimolecular fluorescence complementation analysis revealed that the dephosphorylated PIP5Kγ661 became associated with the clathrin adaptor protein complex AP-2 at postsynapses in situ. NMDA-induced AMPA receptor endocytosis and low-frequency stimulation-induced LTD were completely blocked by inhibiting the association between dephosphorylated PIP5Kγ661 and AP-2 and by overexpression of a kinase-dead PIP5Kγ661 mutant in hippocampal neurons. Furthermore, knockdown of PIP5Kγ661 inhibited the NMDA-induced AMPA receptor endocytosis. Therefore, NMDA receptor activation controls AMPA receptor endocytosis during hippocampal LTD by regulating PIP5Kγ661 activity at postsynapses.  相似文献   

12.
Bovine adrenocortical cells express bTREK-1 K(+) (bovine KCNK2) channels that are inhibited by ANG II through a Gq-coupled receptor by separate Ca(2+) and ATP hydrolysis-dependent signaling pathways. Whole cell and single patch clamp recording from adrenal zona fasciculata (AZF) cells were used to characterize Ca(2+)-dependent inhibition of bTREK-1. In whole cell recordings with pipette solutions containing 0.5 mM EGTA and no ATP, the Ca(2+) ionophore ionomycin (1 μM) produced a transient inhibition of bTREK-1 that reversed spontaneously within minutes. At higher concentrations, ionomycin (5-10 μM) produced a sustained inhibition of bTREK-1 that was reversible upon washing, even in the absence of hydrolyzable [ATP](i). BAPTA was much more effective than EGTA at suppressing bTREK-1 inhibition by ANG II. When intracellular Ca(2+) concentration ([Ca(2+)](i)) was buffered to 20 nM with either 11 mM BAPTA or EGTA, ANG II (10 nM) inhibited bTREK-1 by 12.0 ± 4.5% (n=11) and 59.3 ± 8.4% (n=4), respectively. Inclusion of the water-soluble phosphatidylinositol 4,5-bisphosphate (PIP(2)) analog DiC(8)PI(4,5)P(2) in the pipette failed to increase bTREK-1 expression or reduce its inhibition by ANG II. The open probability (P(o)) of unitary bTREK-1 channels recorded from inside-out patches was reduced by Ca(2+) (10-35 μM) in a concentration-dependent manner. These results are consistent with a model in which ANG II inhibits bTREK-1 K(+) channels by a Ca(2+)-dependent mechanism that does not require the depletion of membrane-associated PIP(2). They further indicate that the Ca(2+) source is located in close proximity within a "Ca(2+) nanodomain" of bTREK-1 channels, where [Ca(2+)](i) may reach concentrations of >10 μM. bTREK-1 is the first two-pore K(+) channel shown to be inhibited by Ca(2+) through activation of a G protein-coupled receptor.  相似文献   

13.
We tested the hypothesis that, in airway smooth muscle cells, stimulation of G-protein-coupled receptors by contractile agonists activates Src kinase and that this kinase modulates cell contractility and Ca(2+) signaling by affecting the levels of the phospholipase C substrate phosphatidylinositol 4,5-bisphosphate (PIP(2)). Stimulation of cultured rat tracheal smooth muscle cells with serotonin (5-HT) induced an increase in Src activity, Ca(2+) mobilization, and contraction (decrease in cell area). 5-HT-evoked cell contraction was reduced by a specific inhibitor of Src family kinases, 4-amino-5(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1). Peak Ca(2+) responses to 5-HT were attenuated by PP1 and an anti-Src-blocking antibody and augmented by expression of constitutively activated Y529F Src. Sustained phases of Ca(2+) responses to 5-HT and Ca(2+) influx resulting from emptying of Ca(2+) stores in the endoplasmic reticulum by thapsigargin were also decreased after PP1 treatment. PP1 significantly reduced the turnover of inositol phosphates produced on 5-HT stimulation and the amount of PIP(2) in the Triton X-100-insoluble lipid fraction. Overall, these data demonstrate that, in rat tracheal smooth muscle cells, Src kinase modulates 5-HT-evoked cell contractility and Ca(2+) signaling by regulating PIP(2) levels and Ca(2+) influx.  相似文献   

14.
Polycystin-2, a member of the TRP family of calcium channels, is encoded by the human PKD2 gene. Mutations in that gene can lead to swelling of nephrons into the fluid-filled cysts of polycystic kidney disease. In addition to expression in tubular epithelial cells, human polycystin-2 is found in muscle and neuronal cells, but its cell biological function has been unclear. A homologue in Caenorhabditis elegans is necessary for male mating behavior. We compared the behavior, calcium signaling mechanisms, and electrophysiology of wild-type and pkd-2 knockout C. elegans. In addition to characterizing PKD-2-mediated aggregation and mating behaviors, we found that polycystin-2 is an intracellular Ca(2+) release channel that is required for the normal pattern of Ca(2+) responses involving IP(3) and ryanodine receptor-mediated Ca(2+) release from intracellular stores. Activity of polycystin-2 creates brief cytosolic Ca(2+) transients with increased amplitude and decreased duration. Polycystin-2, along with the IP(3) and ryanodine receptors, acts as a major calcium-release channel in the endoplasmic reticulum in cells where rapid calcium signaling is required, and polycystin-2 activity is essential in those excitable cells for rapid responses to stimuli.  相似文献   

15.
Three subtypes of inositol 1,4,5-trisphosphate receptor (IP(3)R1, IP(3)R2, and IP(3)R3) Ca(2+) release channel share basic properties but differ in terms of regulation. To what extent they contribute to complex Ca(2+) signaling, such as Ca(2+) oscillations, remains largely unknown. Here we show that HeLa cells express comparable amounts of IP(3)R1 and IP(3)R3, but knockdown by RNA interference of each subtype results in dramatically distinct Ca(2+) signaling patterns. Knockdown of IP(3)R1 significantly decreases total Ca(2+) signals and terminates Ca(2+) oscillations. Conversely, knockdown of IP(3)R3 leads to more robust and long lasting Ca(2+) oscillations than in controls. Effects of IP(3)R3 knockdown are surprisingly similar in COS-7 cells that predominantly (>90% of total IP(3)R) express IP(3)R3, suggesting that IP(3)R3 functions as an anti-Ca(2+)-oscillatory unit without contributing to peak amplitude of Ca(2+) signals, irrespective of its relative expression level. Therefore, differential expression of the IP(3)R subtype is critical for various forms of Ca(2+) signaling, and, particularly, IP(3)R1 and IP(3)R3 have opposite roles in generating Ca(2+) oscillations.  相似文献   

16.
Brevetoxin-3 (PbTx-3), described to increase the open probability of voltage-dependent sodium channels, caused trains of action potentials and fast oscillatory changes in fluorescence intensity of fluo-3-loaded rat skeletal muscle cells in primary culture, indicating that the toxin increased intracellular Ca(2+) levels. PbTx-3 did not elicit calcium transients in dysgenic myotubes (GLT cell line), lacking the alpha1 subunit of the dihydropyridine receptor (DHPR), but after transfection of the alpha1DHPR cDNA to GLT cells, PbTx-3 induced slow calcium transients that were similar to those of normal cells. Ca(2+) signals evoked by PbTx-3 were inhibited by blocking either IP(3) receptors, with 2-aminoethoxydiphenyl borate, or phospholipase C with U73122. PbTx-3 caused a tetrodotoxin-sensitive increase in intracellular IP(3) mass levels, dependent on extra-cellular Na(+). A similar increase in IP(3) mass was induced by high K(+) depolarization but no action potential trains (nor calcium signals) were elicited by prolonged depolarization under current clamp conditions. The increase in IP(3) mass induced by either PbTx-3 or K(+) was also detected in Ca(2+)-free medium. These results establish that the effect of the toxin on both intracellular Ca(2+) and IP(3) levels occurs via a membrane potential sensor instead of directly by Na(+) flux and supports the notion of a train of action potentials being more efficient as a stimulus than sustained depolarization, suggesting that tetanus is the physiological stimulus for the IP(3)-dependent calcium signal involved in regulation of gene expression.  相似文献   

17.
Calcium (Ca2+) oscillations play fundamental roles in various cell signaling processes and have been the subject of numerous modeling studies. Here we have implemented a general mathematical model to simulate the impact of store-operated Ca2+ entry on intracellular Ca2+ oscillations. In addition, we have compared two different models of the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and their influences on intracellular Ca2+ oscillations. Store-operated Ca2+ entry following Ca2+ depletion of endoplasmic reticulum (ER) is an important component of Ca2+ signaling. We have developed a phenomenological model of store-operated Ca2+ entry via store-operated Ca2+ (SOC) channels, which are activated upon ER Ca2+ depletion. The depletion evokes a bi-phasic Ca2+ signal, which is also produced in our mathematical model. The IP3R is an important regulator of intracellular Ca2+ signals. This IP3 sensitive Ca2+ channel is also regulated by Ca2+. We apply two IP3R models, the Mak-McBride-Foskett model and the De Young and Keizer model, with significantly different channel characteristics. Our results show that the two separate IP3R models evoke intracellular Ca2+ oscillations with different frequencies and amplitudes. Store-operated Ca2+ entry affects the oscillatory behavior of these intracellular Ca2+ oscillations. The IP3 threshold is altered when store-operated Ca2+ entry is excluded from the model. Frequencies and amplitudes of intracellular Ca2+ oscillations are also altered without store-operated Ca2+ entry. Under certain conditions, when intracellular Ca2+ oscillations are absent, excluding store-operated Ca2+ entry induces an oscillatory response. These findings increase knowledge concerning store-operated Ca2+ entry and its impact on intracellular Ca2+ oscillations.  相似文献   

18.
Calcium signaling is used by neurons to control a variety of functions, including cellular differentiation, synaptic maturation, neurotransmitter release, intracellular signaling and cell death. This review focuses on one of the most important Ca(2+) regulators in the cell, the plasma membrane Ca(2+)-ATPase (PMCA), which has a high affinity for Ca(2+) and is widely expressed in brain. The ontogeny of PMCA isoforms, linked to specific requirements of Ca(2+) during development of different brain areas, is addressed, as well as their function in the adult tissue. This is based on the high diversity of variants in the PMCA family in brain, which show particular kinetic differences possibly related to specific localizations and functions of the cell. Conversely, alterations in the activity of PMCAs could lead to changes in Ca(2+) homeostasis and, consequently, to neural dysfunction. The involvement of PMCA isoforms in certain neuropathologies and in brain ageing is also discussed.  相似文献   

19.
We have previously reported that insulin increases the synthesis de novo of phosphatidic acid (PA), phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2) and diacylglycerol (DAG) in BC3H-1 myocytes and/or rat adipose tissue. Here we have further characterized these effects of insulin and examined whether there are concomitant changes in inositol phosphate generation and Ca2+ mobilization. We found that insulin provoked very rapid increases in PI content (20% within 15 s in myocytes) and, after a slight lag, PIP and PIP2 content in both BC3H-1 myocytes and rat fat pads (measured by increases in 32P or 3H content after prelabelling phospholipids to constant specific radioactivity by prior incubation with 32Pi or [3H]inositol). Insulin also increased 32Pi incorporation into these phospholipids when 32Pi was added either simultaneously with insulin or 1 h after insulin. Thus, the insulin-induced increase in phospholipid content appeared to be due to an increase in phospholipid synthesis, which was maintained for at least 2 h. Insulin increased DAG content in BC3H-1 myocytes and adipose tissue, but failed to increase the levels of inositol monophosphate (IP), inositol bisphosphate (IP2) or inositol trisphosphate (IP3). The failure to observe an increase in IP3 (a postulated 'second messenger' which mobilizes intracellular Ca2+) was paralleled by a failure to observe an insulin-induced increase in the cytosolic concentration of Ca2+ in BC3H-1 myocytes as measured by Quin 2 fluorescence. Like insulin, the phorbol diester 12-O-tetradecanoylphorbol 13-acetate (TPA) increased the transport of 2-deoxyglucose and aminoisobutyric acid in BC3H-1 myocytes. These effects of insulin and TPA appeared to be independent of extracellular Ca2+. We conclude that the phospholipid synthesis de novo effect of insulin is provoked very rapidly, and is attended by increases in DAG but not IP3 or Ca2+ mobilization. The insulin-induced increase in DAG does not appear to be a consequence of phospholipase C acting upon the expanded PI + PIP + PIP2 pool, but may be derived directly from PA. Our findings suggest the possibility that DAG (through protein kinase C activation) may function as an important intracellular 'messenger' for controlling metabolic processes during insulin action.  相似文献   

20.
Inositol 1,4,5-trisphosphate (IP3) has long been recognized as a second messenger for intracellular Ca2+ mobilization. Recently, sphingosine 1-phosphate (S1P) has been shown to be involved in Ca2+ release from the endoplasmic reticulum (ER). Here, we investigated the role of S1P and IP3 in antigen (Ag)-induced intracellular Ca2+ mobilization in RBL-2H3 mast cells. Antigen-induced intracellular Ca2+ mobilization was only partially inhibited by the sphingosine kinase inhibitor dl-threo-dihydrosphingosine (DHS) or the IP3 receptor inhibitor 2-aminoethoxydiphenyl borate (2-APB), whereas preincubation with both inhibitors led to complete inhibition. In contrast, stimulation of A3 adenosine receptors with N5-ethylcarboxamidoadenosine (NECA) caused intracellular Ca2+ mobilization that was completely abolished by 2-APB but not by DHS, suggesting that NECA required only the IP3 pathway, while antigen used both the IP3 and S1P pathways. Interestingly, however, inhibition of IP3 production with the phospholipase C inhibitor U73122 completely abolished Ca2+ release from the ER induced by either stimulant. This suggested that S1P alone, without concomitant production of IP3, would not cause intracellular Ca2+ mobilization. This was further demonstrated in some clones of RBL-2H3 cells excessively overexpressing a beta isoform of Class II phosphatidylinositol 3-kinase (PI3KC2beta). In such clones including clone 5A4C, PI3KC2beta was overexpressed throughout the cell, although endogenous PI3KC2beta was normally expressed only in the ER. Overexpression of PI3KC2beta in the cytosol and the PM led to depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), resulting in a marked reduction in IP3 production. This could explain the abolishment of intracellular Ca2+ mobilization in clone 5A4C. Supporting this hypothesis, the Ca2+ mobilization was reconstituted by the addition of exogenous PI(4,5)P2 in these cells. Our results suggest that both IP3 and S1P contribute to FcvarepsilonRI-induced Ca2+ release from the ER and production of IP3 is necessary for S1P to cause Ca2+ mobilization from the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号