首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well established that acute activation of members of the protein kinase C (PKC) family induced by activation of cellular receptors can transduce extracellular stimuli to intracellular signaling. However, the functions of sustained activation of PKC are not well studied. We have previously shown that sustained activation of classical PKC isoforms over 15-60 min induced the formation of the pericentrion, a subset of recycling endosomes that are sequestered perinuclearly in a PKC- and phospholipase D (PLD)-dependent manner. In this study, we investigated the role of this process in the phosphorylation of EGFR on threonine 654 (Thr-654) and in the regulation of intracellular trafficking and fate of epidermal growth factor receptor (EGFR). Sustained stimulation of the angiotensin II receptor induced translocation of the EGFR to the pericentrion, which in turn prevents full access of EGF to the EGFR. These effects required PKC and PLD activities, and direct stimulation of PKC with phorbol esters was sufficient to reproduce these effects. Furthermore, activation of PKC induced delayed phosphorylation of EGFR on Thr-654 that coincided with the formation of the pericentrion and which was dependent on PLD and endocytosis of EGFR. Thus, Thr-654 phosphorylation required the formation of the pericentrion. On the other hand, using a T654A mutant of EGFR, we find that the phosphorylation on Thr-654 was not required for translocation of EGFR to the pericentrion but was required for protection of EGFR from degradation in response to EGF. Taken together, these results demonstrate a novel role for the pericentrion in the regulation of EGFR phosphorylation, which in turn is important for the fates of EGFR.  相似文献   

2.
Sustained activation of protein kinase C (PKC) isoenzymes alpha and betaII leads to their translocation to a perinuclear region and to the formation of the pericentrion, a PKC-dependent subset of recycling endosomes. In MCF-7 human breast cancer cells, the action of the PKC activator 4beta-phorbol-12-myristate-13-acetate (PMA) evokes ceramide formation, which in turn prevents PKCalpha/betaII translocation to the pericentrion. In this study we investigated the mechanisms by which ceramide negatively regulates this translocation of PKCalpha/betaII. Upon PMA treatment, HEK-293 cells displayed dual phosphorylation of PKCalpha/betaII at carboxyl-terminal sites (Thr-638/641 and Ser-657/660), whereas in MCF-7 cells PKCalpha/betaII were phosphorylated at Ser-657/660 but not Thr-638/641. Inhibition of ceramide synthesis by fumonisin B1 overcame the defect in PKC phosphorylation and restored translocation of PKCalpha/betaII to the pericentrion. To determine the involvement of ceramide-activated protein phosphatases in PKC regulation, we employed small interference RNA to silence individual Ser/Thr protein phosphatases. Knockdown of isoforms alpha or beta of the catalytic subunits of protein phosphatase 1 not only increased phosphorylation of PKCalpha/betaII at Thr-638/641 but also restored PKCbetaII translocation to the pericentrion. Mutagenesis approaches in HEK-293 cells revealed that mutation of either Thr-641 or Ser-660 to Ala in PKCbetaII abolished sequestration of PKC, implying the indispensable roles of phosphorylation of PKCalpha/betaII at those sites for their translocation to the pericentrion. Reciprocally, a point mutation of Thr-641 to Glu, which mimics phosphorylation, in PKCbetaII overcame the inhibitory effects of ceramide on PKC translocation in PMA-stimulated MCF-7 cells. Therefore, the results demonstrate a novel role for carboxyl-terminal phosphorylation of PKCalpha/betaII in the translocation of PKC to the pericentrion, and they disclose specific regulation of PKC autophosphorylation by ceramide through the activation of specific isoforms of protein phosphatase 1.  相似文献   

3.
It has been previously shown that upon sustained stimulation (30-60 min) with phorbol esters, protein kinase C (PKC) alpha and betaII become sequestered in a juxtanuclear region, the pericentrion. The activation of PKC also results in sequestration of transferrin, suggesting a role for PKC in regulating endocytosis and sequestration of recycling components. In this work we characterize the pericentrion as a PKC-dependent subset of the recycling compartment. We demonstrate that upon sustained stimulation of PKC, both protein (CD59, caveolin) and possibly also lipid (Bodipy-GM1) cargo become sequestered in a PKC-dependent manner. This sequestration displayed a strict temperature requirement and was inhibited below 32 degrees C. Treatment of cells with phorbol myristate acetate for 60 min led to the formation of a distinct membrane structure. PKC sequestration and pericentrion formation were blocked by hypertonic sucrose as well as by potassium depletion (inhibitors of clathrin-dependent endocytosis) but not by nystatin or filipin, which inhibit clathrin-independent pathways. Interestingly, it was also observed that some molecules that internalize through clathrin-independent pathways (CD59, Bodipy-GM1, caveolin) also sequestered to the pericentrion upon sustained PKC activation, suggesting that PKC acted distal to the site of internalization of endocytic cargo. Together these results suggest that PKC regulates sequestration of recycling molecules into this compartment, the pericentrion.  相似文献   

4.
Regulation of phospholipase D (PLD) activity participating in signal transduction involves complex interactions with small G-proteins (ARF, Rho) and protein kinase C isoforms (PKCalpha). In SK-N-MC human neuroblastoma cells, phorbol ester (TPA) activation of PLD was enhanced by overexpressing myristoylated alanine-rich C kinase substrate (MARCKS). To study MARCKS interactions with PLD, we investigated PLD isoform expression and activation by TPA and GTPgammaS in intact and digitonin-permeabilized clones transfected with MARCKS (M22). PLD2 was in both cytosol and membrane fractions while PLD1 was primarily membrane-associated in both vector control and M22 cells; location or quantities were unaltered by TPA treatment. TPA-stimulated PLD activity was higher in both intact and digitonin-permeabilized M22 cells than in vector controls. In contrast, GTPgammaS-stimulated PLD activity was independent of MARCKS expression but was additive with MARCKS-PKC-dependent activation in permeabilized cells. Combinations of PKC inhibition and down-regulation in intact and permeabilized (with GTPgammaS present) cells indicated that a PKC-mediated phosphorylation event was necessary in intact cells without access to GTPgammaS, stimulation of PLD mediated by GTPgammaS was independent of PKC, and PLD activation by PKC in permeabilized cells was kinase-independent. Western blot analysis showed that MARCKS, PKCalpha, PLD1 and PLD2 were present in a detergent-insoluble fraction (DIF); GTPgammaS increased recovery of PLD2 in DIF. Disruption of cholesterol-rich DIFs with digitonin, cyclodextrin or filipin potentiated activation of PLD by TPA. Our studies suggest that activation of PLD by PKC requires MARCKS and can involve both phosphorylation-independent and -dependent processes. As PLD activation by GTPgammaS is PKC-MARCKS-independent, MARCKS may provide a fine tuning component in conjunction with G-protein-mediated mechanisms for regulation of PLD.  相似文献   

5.
Recent studies identify conventional protein kinase C (PKC) isoform phosphorylations at conserved residues in the activation loop and C terminus as maturational events that influence enzyme activity and targeting but are not dynamically regulated by second messengers. In contrast, this study identifies phorbol 12-myristoyl 13-acetate (PMA)- and norepinephrine-induced phosphorylations of PKC epsilon (at the C-terminal hydrophobic motif) and PKC delta (at the activation loop) as events that accompany endogenous novel PKC (nPKC) isoform activation in neonatal rat cardiomyocytes. Agonist-induced nPKC phosphorylations are prevented (and the kinetics of PMA-dependent PKC down-regulation are slowed) by pharmacologic inhibitors of nPKC kinase activity. PKC delta is recovered from PMA-treated cultures with increased in vitro lipid-independent kinase activity (and altered substrate specificity); the PMA-dependent increase in PKC delta kinase activity is attenuated when PKC delta activation loop phosphorylation is prevented. To distinguish roles of individual nPKC isoforms in nPKC phosphorylations, wild-type (WT) and dominant negative (DN) PKC delta and PKC epsilon mutants were introduced into cardiomyocyte cultures using adenovirus-mediated gene transfer. WT-PKC delta and WT-PKC epsilon are highly phosphorylated at activation loop and hydrophobic motif sites, even in the absence of allosteric activators. DN-PKC delta is phosphorylated at the activation loop but not the hydrophobic motif; DN-PKC epsilon is phosphorylated at the hydrophobic motif but not the activation loop. Collectively, these results identify a role for PKC epsilon in nPKC activation loop phosphorylations and PKC delta in nPKC hydrophobic motif phosphorylations. Agonist-induced nPKC isoform phosphorylations that accompany activation/translocation of the enzyme contribute to the regulation of PKC delta kinase activity, may influence nPKC isoform trafficking/down-regulation, and introduce functionally important cross-talk for nPKC signaling pathways in cardiomyocytes.  相似文献   

6.
Protein kinase C (PKC), a phospholipid-dependent serine/threonine kinase, appears to be involved in the signal transduction response to many hormones and growth factors; there are 11 different PKC isozymes. Because PKC isozymes directly and/or indirectly participate in signal transduction pathways of normal and transformed cells through phosphorylation of target proteins, it is critical to understand the diversity of the intracellular signaling pathways regulated by each PKC isozyme. Thus, PKC isozyme-specific substrates are useful to understand the characterization of the intracellular signaling pathways for each PKC isozyme. Consensus sequences and sequence information obtained from PKC target proteins are very important to design PKC isozyme-specific peptide substrates. Moreover, computational prediction programs of phosphorylation sites using a library of peptide substrates aid in the fast design of PKC isozyme-specific peptide substrates. Although a large number of target proteins and synthetic peptides for PKCs are known, only two peptide substrates (peptide 422–426 of murine elongation factor-1α and Alphatomega peptide) have been reported as PKC isozyme-specific peptide substrates. This discussion will review the literature concerning these native and synthetic PKC isozyme-specific peptide substrates and their design.  相似文献   

7.
The responses of human neutrophils (PMN) involve reorganization and phosphorylation of cytoskeletal components. We investigated the translocation of protein kinase C (PKC) isoforms to PMN cytoskeletal (Triton-insoluble) fractions, in conjunction with activation of the respiratory burst enzyme NADPH oxidase. In resting PMN, PKC-delta (29%) and small amounts of PKC-alpha (0.6%), but not PKC-betaII, were present in cytoskeletal fractions. Upon stimulation with the PKC agonist PMA, the levels of PKC-alpha, PKC-betaII, and PKC-delta increased in the cytoskeletal fraction, concomitant with a decrease in the noncytoskeletal (Triton-soluble) fractions. PKC-delta maximally associated with cytoskeletal fractions at 160 nM PMA and then declined, while PKC-alpha and PKC-betaII plateaued at 300 nM PMA. Translocation of PKC-delta was maximal by 2 min and sustained for at least 10 min. Translocation of PKC-alpha and PKC-betaII was biphasic, plateauing at 2-3 min and then increasing up to 10 min. Under maximal stimulation conditions, PKC isoforms were entirely cytoskeletal associated. Translocation of the NADPH oxidase component p47phox to the cytoskeletal fraction correlated with translocation of PKC-alpha and PKC-betaII, but not with translocation of PKC-delta. Oxidase activity in cytoskeletal fractions paralleled translocation of PKC-alpha, PKC-betaII, and p47phox. Stimulation with 1,2-dioctanoylglycerol resulted in little translocation of PKC isoforms or p47phox, and in minimal oxidase activity. We conclude that conventional PKC isoforms (PKC-alpha and/or PKC-betaII) may regulate PMA-stimulated cytoskeletal association and activation of NADPH oxidase. PKC-delta may modulate other PMN responses that involve cytoskeletal components.  相似文献   

8.
Abstract : Phosphorylation of specific amino acid residues is believed to be crucial for the agonist-induced regulation of several G protein-coupled receptors. This is especially true for the three types of opioid receptors (μ, δ, and α), which contain consensus sites for phosphorylation by numerous protein kinases. Protein kinase C (PKC) has been shown to catalyze the in vitro phosphorylation of μ- and δ-opioid receptors and to potentiate agonist-induced receptor desensitization. In this series of experiments, we continue our investigation of how opioid-activated PKC contributes to homologous receptor down-regulation and then expand our focus to include the exploration of the mechanism(s) by which μ-opioids produce PKC translocation in SH-SY5Y neuroblastoma cells. [d Ala2,N-Me-Phe4,Gly-ol]enkephalin (DAMGO)-induced PKC translocation follows a time-dependent and biphasic pattern beginning 2 h after opioid addition, when a pronounced translocation of PKC to the plasma membrane occurs. When opioid exposure is lengthened to >12 h, both cytosolic and particulate PKC levels drop significantly below those of control-treated cells in a process we termed “reverse translocation.” The opioid receptor antagonist naloxone, the PKC inhibitor chelerythrine, and the L-type calcium channel antagonist nimodipine attenuated opioid-mediated effects on PKC and μ-receptor down-regulation, suggesting that this is a process partially regulated by Ca2+-dependent PKC isoforms. However, chronic exposure to phorbol ester, which depletes the cells of diacylglycerol (DAG) and Ca2+-sensitive PKC isoforms, before DAMGO exposure, had no effect on opioid receptor down-regulation. In addition to expressing conventional (PKC-α) and novel (PKC-ε) isoforms, SH-SY5Y cells also contain a DAG-and Ca2+-independent, atypical PKC isozyme (PKC-ξ), which does not decrease in expression after prolonged DAMGO or phorbol ester treatment. This led us to investigate whether PKC-ξ is similarly sensitive to activation by μ-opioids. PKC-ξ translocates from the cytosol to the membrane with kinetics similar to those of PKC-α and ε in response to DAMGO but does not undergo reverse translocation after longer exposure times. Our evidence suggests that direct PKC activation by μ-opioid agonists is involved in the processes that result in μ-receptor down-regulation in human neuroblastoma cells and that conventional, novel, and atypical PKC isozymes are involved.  相似文献   

9.
10.
Agonist exposure of many G protein-coupled receptors induces a rapid receptor phosphorylation and uncoupling from G proteins. Resensitization of these desensitized receptors requires endocytosis and subsequent dephosphorylation. Using a yeast two-hybrid screen, the rat mu-opioid receptor (MOR1, also termed MOP) was found to be associated with phospholipase D2 (PLD2), a phospholipid-specific phosphodiesterase located in the plasma membrane, which has been implicated in the formation of endocytotic vesicles. Coimmunoprecipitation experiments in HEK293 cells coexpressing MOR1 and PLD2 confirmed that MOR1 constitutively interacts with PLD2. Treatment with the mu receptor agonist DAMGO ([d-Ala(2), Me Phe(4), Glyol(5)]enkephalin) led to an increase in PLD2 activity, whereas morphine, which does not induce MOR1 receptor internalization, failed to induce PLD2 activation. The DAMGO-mediated PLD2 activation was inhibited by brefeldin A, an inhibitor of ADP-ribosylation factor (ARF) but not by the protein kinase C (PKC) inhibitor calphostin C indicating that opioid receptor-mediated activation of PLD2 is ARF- but not PKC-dependent. Furthermore, heterologous stimulation of PLD2 by phorbol ester led to an accelerated internalization of the mu-opioid receptor after both DAMGO and morphine exposure. Conversely the inhibition of PLD2-mediated phosphatidic acid formation by 1-butanol or overexpression of a negative mutant of PLD2 prevented agonist-mediated endocytosis of MOR1. Together, these data suggest that PLD2 play a key role in the regulation of agonist-induced endocytosis of the mu-opioid receptor.  相似文献   

11.
Abstract : Agonist-induced down-regulation of opioid receptors appears to require the phosphorylation of the receptor protein. However, the identities of the specific protein kinases that perform this task remain uncertain. Protein kinase C (PKC) has been shown to catalyze the phosphorylation of several G protein-coupled receptors and potentiate their desensitization toward agonists. However, it is unknown whether opioid receptor agonists induce PKC activation under physiological conditions. Using cultured SH-SY5Y neuroblastoma cells, which naturally express μ- and δ-opioid receptors, we investigated whether μ-opioid receptor agonists can activate PKC by measuring enzyme translocation to the membrane fraction. PKC translocation and opioid receptor densities were simultaneously measured by 3H-phorbol ester and [3H]diprenorphine binding, respectively, to correlate alterations in PKC localization with changes in receptor binding sites. We observed that μ-opioid agonists have a dual effect on membrane PKC density depending on the period of drug exposure. Exposure for 2-6 h to [ d -Ala2, N -Me-Phe4, Gly-ol]enkephalin or morphine promotes the translocation of PKC from the cytosol to the plasma membrane. Longer periods of opioid exposure (>12 h) produce a decrease in membrane-bound PKC density to a level well below basal. A significant decrease in [3H]diprenorphine binding sites is first observed at 2 h and continues to decline through the last time point measured (48 h). The opioid receptor antagonist naloxone attenuated both opioid-mediated PKC translocation and receptor down-regulation. These results demonstrate that opioids are capable of activating PKC, as evidenced by enhanced translocation of the enzyme to the cell membrane, and this finding suggests that PKC may have a physiological role in opioid receptor plasticity.  相似文献   

12.
PKC isoform βII modulates translation and can be recruited on ribosomes via its scaffold RACK1 (receptor for activated protein kinase C 1), which resides on the 40S ribosomal subunit. However, whether a PKC activity exists on the ribosome is not yet demonstrated. We purified native ribosomes by two different techniques, which avoid stripping of initiation factors and other associated proteins. In both cases, purified ribosomes are able to phosphorylate a specific PKC substrate, MARCKS (Myristoylated Alanine-Rich C-Kinase Substrate). MARCKS phosphorylation is switched on by treatment with PKC agonist PMA (Phorbol 12-Myristate 13-Acetate). Consistently, the broad PKC inhibitor BMI (Bisindolyl Maleimide I) abrogates MARCKS phosphorylation. These data show that native ribosomes host active PKC and hence allow the phosphorylation of ribosome-associated substrates like initiation factors and mRNA binding proteins.  相似文献   

13.
Muscarinic receptor stimulation or protein kinase C (PKC) activation in rat adrenal medullary and PC12 cells rapidly induces tyrosine phosphorylation of TWIK-related-acid-sensitive K+ 1 (TASK1) channels with the subsequent clathrin-dependent endocytosis. Our previous study suggested that the muscarinic signal is transmitted to the non-receptor tyrosine kinase Src through PKC and Pyk2. Although PKC activation is known to stimulate Pyk2 in certain types of cells, its molecular mechanism remains unclear. In this study, proximity ligation assay (PLA) and other molecular biological approaches were used to elucidate the details of this muscarinic signaling in PC12 cells. When green fluorescent protein (GFP)-TASK1 was expressed, the majority of GFP-TASK1 was located at the cell periphery. However, the simultaneous expression of GFP-TASK1 and PKCα, but not PKCδ, led to GFP-TASK1 internalization. Muscarinic receptor stimulation resulted in transient co-localization of Pyk2 and Src at the cell periphery, and expression of kinase dead (KD) Pyk2 and Src, but not Pyk2 and KD Src, resulted in GFP-TASK1 internalization. PLA analysis revealed that in response to muscarine, PKCα activates Pyk2 through phosphorylating its serine residues. These results indicate that muscarinic receptor stimulation induces TASK1 channel endocytosis sequentially through PKCα, Pyk2, and Src, and PKCα activates Pyk2 through phosphorylation.  相似文献   

14.
The activation of protein kinase C was investigated in digitonin-permeabilized human neuroblastoma SH-SY5Y cells by measuring the phosphorylation of the specific protein kinase C substrate myelin basic protein4-14. The phosphorylation was inhibited by the protein kinase C inhibitory peptide PKC19-36 and was associated to a translocation of the enzyme to the membrane fractions of the SH-SY5Y cells. 1,2-Dioctanoyl-sn-glycerol had no effect on protein kinase C activity unless the calcium concentration was raised to concentrations found in stimulated cells (above 100 nM). Calcium in the absence of other activators did not stimulate protein kinase C. Phorbol 12-myristate 13-acetate was not dependent on calcium for the activation or the translocation of protein kinase C. The induced activation was sustained for 10 min, and thereafter only a small net phosphorylation of the substrate could be detected. Calcium or dioctanoylglycerol, when applied alone, only caused a minor translocation, whereas in combination a marked translocation was observed. Arachidonic acid (10 microM) enhanced protein kinase C activity in the presence of submaximal concentrations of calcium and dioctanoylglycerol. Quinacrine and p-bromophenacyl bromide did not inhibit calcium- and dioctanoylglycerol-induced protein kinase C activity at concentrations which are considered to be sufficient for phospholipase A2 inhibition.  相似文献   

15.
Protein kinase C (PKC) isoforms play key roles in the regulation of cardiac contraction, ischemic preconditioning, and hypertrophy/failure. Models of PKC activation generally focus on lipid cofactor-induced PKC translocation to membranes. This study identifies tyrosine phosphorylation as an additional mechanism that regulates PKC delta actions in cardiomyocytes. Using immunoblot analysis with antibodies to total PKC delta and PKC delta-pY(311), we demonstrate that PKC delta partitions between soluble and particulate fractions (with little Tyr(311) phosphorylation) in resting cardiomyocytes. Phorbol 12-myristate 13-acetate (PMA) promotes PKC delta translocation to membranes and phosphorylation at Tyr(311). H(2)O(2) also increases PKC delta-pY(311) in association with its release from membranes. Both PMA- and H(2)O(2)-dependent increases in PKC delta-pY(311) are mediated by Src family kinases, but they occur via different mechanisms. The H(2)O(2)-dependent increase in PKC delta-pY(311) results from Src activation and increased Src-PKC delta complex formation. The PMA-dependent increase in PKC delta-pY(311) results from a lipid cofactor-induced conformational change that renders PKC delta a better substrate for phosphorylation by precomplexed Src kinases (without Src activation). PKC delta-Y(311) phosphorylation does not grossly alter the kinetics of PMA-dependent PKC delta down-regulation. Rather, tyrosine phosphorylation regulates PKC delta kinase activity. PKC delta is recovered from the soluble fraction of H(2)O(2)-treated cardiomyocytes as a tyrosine-phosphorylated, lipid-independent enzyme with altered substrate specificity. In vitro PKC delta phosphorylation by Src also increases lipid-independent kinase activity. The magnitude of this effect varies, depending upon the substrate, suggesting that tyrosine phosphorylation fine-tunes PKC delta substrate specificity. The stimulus-specific modes for PKC delta signaling identified in this study allow for distinct PKC delta-mediated phosphorylation events and responses during growth factor stimulation and oxidant stress in cardiomyocytes.  相似文献   

16.
PKC、PKA和TPK在血小板激活中的作用   总被引:1,自引:0,他引:1  
利用~(32)P-NaH_2PO_4标记猪血小板,然后以PMA、凝血酶、PGE_1、腺苷等处理,结果表明,随着PMA激活PKC,血小板发生聚集。35μmol/LPGE_1或1mmol/LdbcAMP不能抑制50nmol/LPMA诱导的血小板聚集,腺苷却能抑制PMA诱导的血小板聚集(EC_(50)=0.1mmol/L),db-cAMP、腺苷都不能抑制100nmol/LPMA诱导的40kD蛋白磷酸化。PKA激活不能抑制PMA激活的PKC。在PMA、凝血酶激活的血小板中,PKC、TPK都发生激活,40kD底物既是PKC的底物又是TPK的底物,PKC和TPK在血小板聚集中起着重要的调节作用。  相似文献   

17.
18.
In somatic cells, translocation of PKCs is facilitated by receptor for activated C kinase (RACK); however its involvement in egg activation is still elusive. We have followed the translocation pattern of conventional and novel PKCs (cPKCs and nPKCs, respectively) upon egg activation. Confocal microscopy indicated the expression and localization of RACK1, a specific receptor protein for cPKCs. Activation of MII eggs, led to translocation to the egg cortex of PKCα, βII and δ and the co-translocation of RACK1, with both PKCα and PKCβII. The association of PKC and actin, both known to be involved in cortical granules exocytosis (CGE) with RACK1, was demonstrated by co-immunoprecipitation. Egg activation resulted in an increased RACK1 level along with a decreased level of PKCβII. Based on these results, we suggest that upon egg activation, RACK1 shuttles activated cPKCs to the egg cortex, thus facilitating CGE.  相似文献   

19.
Prolonged activation of metabotropic glutamate receptor 5a (mGluR5a) causes synchronized oscillations in intracellular calcium, inositol 1,4,5-trisphosphate production, and protein kinase C (PKC) activation. Additionally, mGluR5 stimulation elicited cyclical translocations of myristoylated alanine-rich protein kinase C substrate, which were opposite to that of gammaPKC (i.e. from plasma membrane to cytosol) and dependent on PKC activity, indicating that myristoylated alanine-rich protein kinase C substrate is repetitively phosphorylated by oscillating gammaPKC on the plasma membrane. Mutation of mGluR5 Thr(840) to aspartate abolished the oscillation of gammaPKC, but the mutation to alanine (T840A) did not. Cotransfection of gammaPKC with betaIIPKC, another Ca2+-dependent PKC, resulted in synchronous oscillatory translocation of both classical PKCs. In contrast, cotransfection of deltaPKC, a Ca2+-independent PKC, abolished the oscillations of both gammaPKC and inositol 1,4,5-trisphosphate. Regulation of the oscillations was dependent on deltaPKC kinase activity but not on gammaPKC. Furthermore, the T840A-mGluR5-mediated oscillations were not blocked by the deltaPKC overexpression. These results revealed that activation of mGluR5 causes translocation of both gammaPKC and deltaPKC to the plasma membrane. deltaPKC, but not gammaPKC, phosphorylates mGluR5 Thr(840), leading to the blockade of both Ca2+ oscillations and gammaPKC cycling. This subtype-specific targeting proposes the molecular basis of the multiple functions of PKC.  相似文献   

20.
Hepatocyte growth factor (HGF) is critical for triggering metastasis of hepatocellular carcinoma cell (HCC). Extracellular signal-regulated kinase (ERK) mediates HGF-induced cell migration via focal adhesion signaling. Protein kinase C (PKC) is a negative regulator of ERK activation, however, both PKC and ERK were required for HGF-induced cell migration. To address this intriguing issue, the signal mechanisms for HGF-induced HepG2 cell migration were investigated in a long-term fashion. HGF-induced phosphorylations of ERK, Src (at Tyr 416) and paxillin (at Ser178 and Tyr31) were up and down for 3 times within 24 h. HGF also induced fluctuant PKC activation and Rac degradation. Consistently, HGF induced intermittent actin polarization within 24 h, which can be blocked by the inhibitors of PKC (Bisindolymaleimide) and ERK. Inhibitor studies revealed that ERK was required for HGF-induced paxillin phosphorylation at Ser178, whereas PKC and Rac-1 may suppress HGF-induced phosphorylation of ERK and paxillin (at Ser178) and upregulate phosphorylation of paxillin at Tyr31. Based on shRNA technique, PKCα and δ were responsible for suppressing HGF-induced phosphorylation of ERK and paxillin (at Ser178), whereas PKC ε and ζ were required for phosphorylation of paxillin at Tyr31. The HGF-induced fluctuant signaling is reminiscent of c-Met endocytosis. Using Concanavalin A, an inhibitor of endocytosis, we found that c-Met endocytosis was required for PKC to suppress ERK phosphorylation. Moreover, HGF-induced c-Met degradation was also fluctuant, which can be prevented by Bisindolymaleimide. In conclusion, PKC is critical for mediating HGF-induced fluctuant ERK-paxillin signaling during cell migration, probably via triggering endosomal degradation of c-Met.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号