首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Branco T  Staras K  Darcy KJ  Goda Y 《Neuron》2008,59(3):475-485
The arrival of an action potential at a synapse triggers neurotransmitter release with a limited probability, p(r). Although p(r) is a fundamental parameter in defining synaptic efficacy, it is not uniform across all synapses, and the mechanisms by which a given synapse sets its basal release probability are unknown. By measuring p(r) at single presynaptic terminals in connected pairs of hippocampal neurons, we show that neighboring synapses on the same dendritic branch have very similar release probabilities, and p(r) is negatively correlated with the number of synapses on the branch. Increasing dendritic depolarization elicits a homeostatic decrease in p(r), and equalizing activity in the dendrite significantly reduces its variability. Our results indicate that local dendritic activity is the major determinant of basal release probability, and we suggest that this feedback regulation might be required to maintain synapses in their operational range.  相似文献   

2.
Multivesicular release at climbing fiber-Purkinje cell synapses.   总被引:10,自引:0,他引:10  
J I Wadiche  C E Jahr 《Neuron》2001,32(2):301-313
Synapses driven by action potentials are thought to release transmitter in an all-or-none fashion; either one synaptic vesicle undergoes exocytosis, or there is no release. We have estimated the glutamate concentration transient at climbing fiber synapses on Purkinje cells by measuring the inhibition of excitatory postsynaptic currents (EPSCs) produced by a low-affinity competitive antagonist of AMPA receptors, gamma-DGG. The results, together with simulations using a kinetic model of the AMPA receptor, suggest that the peak glutamate concentration at this synapse is dependent on release probability but is not affected by pooling of transmitter released from neighboring synapses. We propose that the mechanism responsible for the elevated glutamate concentration at this synapse is the simultaneous release of multiple vesicles per site.  相似文献   

3.
J S Isaacson 《Neuron》1999,23(2):377-384
In the CNS, glutamate typically mediates excitatory transmission via local actions at synaptic contacts. In the olfactory bulb, mitral cell dendrites release glutamate at synapses formed only onto the dendrites of inhibitory granule cells. Here, I show excitatory transmission mediated solely by transmitter spillover between mitral cells in olfactory bulb slices. Dendritic glutamate release from individual mitral cells causes self-excitation via local activation of N-methyl-D-aspartate (NMDA) receptors. Paired recordings reveal that glutamate release from one cell generates NMDA receptor-mediated responses in neighboring mitral cells that are enhanced by blockade of glutamate uptake. Furthermore, spillover generates spontaneous NMDA receptor-mediated population responses. This simultaneous activation of neighboring mitral cells by a diffuse action of glutamate provides a mechanism for synchronizing olfactory principal cells.  相似文献   

4.
Ehlers MD  Heine M  Groc L  Lee MC  Choquet D 《Neuron》2007,54(3):447-460
Synaptic activity regulates the postsynaptic accumulation of AMPA receptors over timescales ranging from minutes to days. Indeed, the regulated trafficking and mobility of GluR1 AMPA receptors underlies many forms of synaptic potentiation at glutamatergic synapses throughout the brain. However, the basis for synapse-specific accumulation of GluR1 is unknown. Here we report that synaptic activity locally immobilizes GluR1 AMPA receptors at individual synapses. Using single-molecule tracking together with the silencing of individual presynaptic boutons, we demonstrate that local synaptic activity reduces diffusional exchange of GluR1 between synaptic and extraynaptic domains, resulting in postsynaptic accumulation of GluR1. At neighboring inactive synapses, GluR1 is highly mobile with individual receptors frequently escaping the synapse. Within the synapse, spontaneous activity confines the diffusional movement of GluR1 to restricted subregions of the postsynaptic membrane. Thus, local activity restricts GluR1 mobility on a submicron scale, defining an input-specific mechanism for regulating AMPA receptor composition and abundance.  相似文献   

5.
Catalysis of site-specific recombination is preceded by the formation of a synapse comprising two DNA sites and multiple subunits of the recombinase, together with other "accessory" proteins in some cases. We investigated the stability of synapses of Tn3 resolvase-bound res recombination sites, in plasmids containing either two or three res sites. Although synapses are long-lived in plasmids with just two res sites, persisting for tens of minutes, a synapse of any two sites is relatively short-lived in plasmids with three res sites. The three alternative pairwise synapses that can be formed in three-res plasmids re-assort rapidly relative to the rate of recombination. We propose a "partner exchange" mechanism for this re-assortment, involving direct attack on a synapse by an unpaired res site. This mechanism reconciles studies on selective synapsis in multi-res substrates, which imply rapid interchange of synaptic pairings, with studies indicating that synapses of two Tn3res sites are stable.  相似文献   

6.
LoGiudice L  Matthews G 《Neuron》2006,51(6):676-677
In this issue of Neuron, Granseth et al. re-examine the mechanism of endocytosis at hippocampal synapses using a new optical reporter, sypHy. They conclude that only a single slow mode of endocytosis operates at this synapse and that retrieval after physiological stimuli is largely, if not solely, dominated by the clathrin-mediated pathway. These conclusions dispute previous assertions that "kiss-and-run" is a major mechanism of vesicle recycling at hippocampal synapses.  相似文献   

7.
DiGregorio DA  Nusser Z  Silver RA 《Neuron》2002,35(3):521-533
Diffusion of glutamate from the synaptic cleft can activate high-affinity receptors, but is not thought to contribute to fast AMPA receptor-mediated transmission. Here, we show that single AMPA receptor EPSCs at the cerebellar mossy fiber-granule cell connection are mediated by both direct release of glutamate and rapid diffusion of glutamate from neighboring synapses. Immunogold localization revealed that AMPA receptors are located exclusively in postsynaptic densities, indicating that spillover of glutamate occurs between synaptic contacts. Spillover currents contributed half the synaptic charge and exhibited little trial-to-trial variability. We propose that spillover of glutamate improves transmission efficacy by both increasing the amplitude and duration of the EPSP and reducing fluctuations arising from the probabilistic nature of transmitter release.  相似文献   

8.
The neurotransmitter GABA regulates many aspects of inhibitory synapse development. We tested the hypothesis that GABAA receptors (GABAARs) work together with the synaptic adhesion molecule neuroligin 2 (NL2) to regulate synapse formation in different subcellular compartments. We investigated mice (“γ2 knockdown mice”) with an engineered allele of the GABAAR γ2 subunit gene which produced a mosaic expression of synaptic GABAARs in neighboring neurons, causing a strong imbalance in synaptic inhibition. Deletion of the γ2 subunit did not abolish synapse formation or the targeting of NL2 to distinct types of perisomatic and axo-dendritic contacts. Thus synaptic localization of NL2 does not require synaptic GABAARs. However, loss of the γ2 subunit caused a selective decrease in the number of axo-dendritic synapses on cerebellar Purkinje cells and cortical pyramidal neurons, whereas perisomatic synapses were not significantly affected. Notably, γ2-positive cells had increased axo-dendritic innervation compared with both γ2-negative and wild-type counterparts. Moreover heterologous synapses on spines, that are found after total deletion of GABAARs from all Purkinje cells, were rare in cerebella of γ2 knockdown mice. These findings reveal a selective role of γ2 subunit-containing GABAARs in regulating synapse development in distinct subcellular compartments, and support the hypothesis that the refinement of axo-dendritic synapses is regulated by activity-dependent competition between neighboring neurons.  相似文献   

9.
The two best-known types of cell-cell communication are chemical synapses and electrical synapses, which are formed by gap junctions. A third, less well known, form of communication is ephaptic transmission, in which electric fields generated by a specific neuron alter the excitability of neighboring neurons as a result of their anatomical and electrical proximity. Ephaptic communication can be present in a variety of forms, each with their specific features and functional implications. One of these is ephaptic modulation within a chemical synapse. This type of communication has recently been proposed for the cone-horizontal cell synapse in the vertebrate retina. Evidence indicates that the extracellular potential in the synaptic terminal of photoreceptors is modulated by current flowing through connexin hemichannels at the tips of the horizontal cell dendrites, mediating negative feedback from horizontal cells to cones. This example can be added to the growing list of cases of ephaptic communication in the central nervous system.  相似文献   

10.
Glia contribute to synapse elimination through phagocytosis in the central nervous system. Despite the important roles of this process in development and neurological disorders, the identity and regulation of the "eat‐me" signal that initiates glia‐mediated phagocytosis of synapses has remained incompletely understood. Here, we generated conditional knockout mice with neuronal‐specific deletion of the flippase chaperone Cdc50a, to induce stable exposure of phosphatidylserine, a well‐known "eat‐me" signal for apoptotic cells, on the neuronal outer membrane. Surprisingly, acute Cdc50a deletion in mature neurons causes preferential phosphatidylserine exposure in neuronal somas and specific loss of inhibitory post‐synapses without effects on other synapses, resulting in abnormal excitability and seizures. Ablation of microglia or the deletion of microglial phagocytic receptor Mertk prevents the loss of inhibitory post‐synapses and the seizure phenotype, indicating that microglial phagocytosis is responsible for inhibitory post‐synapse elimination. Moreover, we found that phosphatidylserine is used for microglia‐mediated pruning of inhibitory post‐synapses in normal brains, suggesting that phosphatidylserine serves as a general "eat‐me" signal for inhibitory post‐synapse elimination.  相似文献   

11.
Hansel C  Linden DJ 《Neuron》2000,26(2):473-482
In classic Marr-Albus-Ito models of cerebellar function, coactivation of the climbing fiber (CF) synapse, which provides massive, invariant excitation of Purkinje neurons (coding the unconditioned stimulus), together with a graded parallel fiber synaptic array (coding the conditioned stimulus) leads to long-term depression (LTD) of parallel fiber-Purkinje neuron synapses, underlying production of a conditioned response. Here, we show that the supposedly invariant CF synapse can also express LTD. Brief 5 Hz stimulation of the CF resulted in a sustained depression of CF EPSCs that did not spread to neighboring parallel fiber synapses. Like parallel fiber LTD, CF LTD required postsynaptic Ca2+ elevation, activation of group 1 mGluRs, and activation of PKC. CF LTD is potentially relevant for models of cerebellar motor control and learning and the developmental conversion from multiple to single CF innervation of Purkinje neurons.  相似文献   

12.
Kwon HB  Castillo PE 《Neuron》2008,57(1):108-120
The mossy fiber to CA3 pyramidal cell synapse (mf-CA3) provides a major source of excitation to the hippocampus. Thus far, these glutamatergic synapses are well recognized for showing a presynaptic, NMDA receptor-independent form of LTP that is expressed as a long-lasting increase of transmitter release. Here, we show that in addition to this "classical" LTP, mf-CA3 synapses can undergo a form of LTP characterized by a selective enhancement of NMDA receptor-mediated transmission. This potentiation requires coactivation of NMDA and mGlu5 receptors and a postsynaptic calcium rise. Unlike classical LTP, expression of this mossy fiber LTP is due to a PKC-dependent recruitment of NMDA receptors specifically to the mf-CA3 synapse via a SNARE-dependent process. Having two mechanistically different forms of LTP may allow mf-CA3 synapses to respond with more flexibility to the changing demands of the hippocampal network.  相似文献   

13.
We have developed a biophysically realistic model of receptor activation at an idealized central glutamatergic synapse that uses Monte Carlo techniques to simulate the stochastic nature of transmission following release of a single synaptic vesicle. For the a synapse with 80 AMPA and 20 NMDA receptors, a single quantum, with 3000 glutamate molecules, opened approximately 3 NMDARs and 20 AMPARs. The number of open receptors varied directly with the total number of receptors, and the fraction of open receptors did not depend on the ratio of co-localized AMPARs and NMDARs. Variability decreased with increases in either total receptor number or quantal size, and differences between the variability of AMPAR and NMDAR responses were due solely to unequal numbers of receptors at the synapse. Despite NMDARs having a much higher affinity for glutamate than AMPARs, quantal release resulted in similar occupancy levels in both receptor types. Receptor activation increased with number of transmitter molecules released or total receptor number, whereas occupancy levels were only dependent on quantal size. Tortuous diffusion spaces reduced the extent of spillover and the activation of extrasynaptic receptors. These results support the conclusion that signaling is spatially independent within and between central glutamatergic synapses.  相似文献   

14.
Tracy TE  Yan JJ  Chen L 《The EMBO journal》2011,30(8):1577-1592
Newly formed glutamatergic synapses often lack postsynaptic AMPA-type glutamate receptors (AMPARs). Aside from 'unsilencing' the postsynaptic site, however, the significance of postsynaptic AMPAR insertion during synapse maturation remains unclear. To investigate the role of AMPAR in synapse maturation, we used RNA interference (RNAi) to knockdown AMPARs in cultured hippocampal neurons. Surprisingly, loss of postsynaptic AMPARs increased the occurrence of presynaptically inactive synapses without changing the release probability of the remaining active synapses. Additionally, heterologous synapses formed between axons and AMPAR-expressing HEK cells develop significantly fewer inactive presynaptic terminals. The extracellular domain of the AMPAR subunit GluA2 was sufficient to reproduce this effect at heterologous synapses. Indeed, the retrograde signalling by AMPARs is independent of their channel function as RNAi-resistant AMPARs restore synaptic transmission in neurons lacking AMPARs despite chronic receptor antagonist treatment. Our findings suggest that postsynaptic AMPARs perform an organizational function at synapses that exceeds their standard role as ionotropic receptors by conveying a retrograde trans-synaptic signal that increases the transmission efficacy at a synapse.  相似文献   

15.
Cadherins and neuroligins (NLs) represent two families of cell adhesion proteins that are essential for the establishment of synaptic connections in vitro; however, it remains unclear whether these proteins act in concert to regulate synapse density. Using a combination of overexpression and knockdown analyses in primary hippocampal neurons, we demonstrate that NL1 and N-cadherin promote the formation of glutamatergic synapses through a common functional pathway. Analysis of the spatial relationship between N-cadherin and NL1 indicates that in 14-day in vitro cultures, almost half of glutamatergic synapses are associated with both proteins, whereas only a subset of these synapses are associated with N-cadherin or NL1 alone. This suggests that NL1 and N-cadherin are spatially distributed in a manner that enables cooperation at synapses. In young cultures, N-cadherin clustering and its association with synaptic markers precede the clustering of NL1. Overexpression of N-cadherin at this time point enhances NL1 clustering and increases synapse density. Although N-cadherin is not sufficient to enhance NL1 clustering and synapse density in more mature cultures, knockdown of N-cadherin at later time points significantly attenuates the density of NL1 clusters and synapses. N-cadherin overexpression can partially rescue synapse loss in NL1 knockdown cells, possibly due to the ability of N-cadherin to recruit NL2 to glutamatergic synapses in these cells. We demonstrate that cadherins and NLs can act in concert to regulate synapse formation.  相似文献   

16.
Experiments on hippocampal slices showed that perfusion with a dextran solution more effectively facilitates AMPA-mediated transmission in structurally complex synapses of mossy fibers of Shaffer collaterals. Estimates for changes in the extracellular Ca2+ concentration in the close vicinity of a reconstructed synapse during the action potential development are obtained. The results together with data about the rather small (0.5 μm) characteristics distance between neighboring synapses showed that the probability of mutual intersynaptic influence via the microenvironment is high. A probable functional role of such influences is discussed.  相似文献   

17.
The heparan sulfate proteoglycan agrin and adhesion molecules are key players in the formation of neuronal and immune synapses that evolved for efficient communication at the sites of cell-cell contact. Transcytosis of infectious virus across epithelial cells upon contact between HIV-1-infected cells and the mucosal pole of the epithelial cells is one mechanism for HIV-1 entry at mucosal sites. In contrast, transcytosis of cell-free HIV-1 is not efficient. A synapse between HIV-1-infected cells and the mucosal epithelial surface that resembles neuronal and immune synapses is visualized by electron microscopy. We have termed this the "viral synapse." Similarities of the viral synapse also extend to the functional level. HIV-1-infected cell-induced transcytosis depends on RGD-dependent integrins and efficient cell-free virus transcytosis is inducible upon RGD-dependent integrin cross-linking. Agrin appears differentially expressed at the apical epithelial surface and acts as an HIV-1 attachment receptor. Envelope glycoprotein subunit gp41 binds specifically to agrin, reinforcing the interaction of gp41 to its epithelial receptor galactosyl ceramide.  相似文献   

18.
Synaptogenesis is required for wiring neuronal circuits in the developing brain and continues to remodel adult networks. However, the molecules organizing synapse development and maintenance in?vivo remain incompletely understood. We now demonstrate that the immunoglobulin adhesion molecule SynCAM 1 dynamically alters synapse number and plasticity. Overexpression of SynCAM 1 in transgenic mice promotes excitatory synapse number, while loss of SynCAM 1 results in fewer excitatory synapses. By turning off SynCAM 1 overexpression in transgenic brains, we show that it maintains the newly induced synapses. SynCAM 1 also functions at mature synapses to alter their plasticity by regulating long-term depression. Consistent with these effects on neuronal connectivity, SynCAM 1 expression affects spatial learning, with knock-out mice learning better. The reciprocal effects of increased SynCAM 1 expression and loss reveal that this adhesion molecule contributes to the regulation of synapse number and plasticity, and impacts how neuronal networks undergo activity-dependent changes.  相似文献   

19.
Park M  Watanabe S  Poon VY  Ou CY  Jorgensen EM  Shen K 《Neuron》2011,70(4):742-757
The assembly and maturation of neural circuits require a delicate balance between synapse formation and elimination. The cellular and molecular mechanisms that coordinate synaptogenesis and synapse elimination are poorly understood. In C. elegans, DD motoneurons respecify their synaptic connectivity during development by completely eliminating existing synapses and forming new synapses without changing cell morphology. Using loss- and gain-of-function genetic approaches, we demonstrate that CYY-1, a cyclin box-containing protein, drives synapse removal in this process. In addition, cyclin-dependent kinase-5 (CDK-5) facilitates new synapse formation by regulating the transport of synaptic vesicles to the sites of synaptogenesis. Furthermore, we show that coordinated activation of UNC-104/Kinesin3 and Dynein is required for patterning newly formed synapses. During the remodeling process, presynaptic components from eliminated synapses are recycled to new synapses, suggesting that signaling mechanisms and molecular motors link the deconstruction of existing synapses and the assembly of new synapses during structural synaptic plasticity.  相似文献   

20.
Synapses of the mammalian central nervous system are highly diverse in function and molecular composition. Synapse diversity per se may be critical to brain function, since memory and homeostatic mechanisms are thought to be rooted primarily in activity-dependent plastic changes in specific subsets of individual synapses. Unfortunately, the measurement of synapse diversity has been restricted by the limitations of methods capable of measuring synapse properties at the level of individual synapses. Array tomography is a new high-resolution, high-throughput proteomic imaging method that has the potential to advance the measurement of unit-level synapse diversity across large and diverse synapse populations. Here we present an automated feature extraction and classification algorithm designed to quantify synapses from high-dimensional array tomographic data too voluminous for manual analysis. We demonstrate the use of this method to quantify laminar distributions of synapses in mouse somatosensory cortex and validate the classification process by detecting the presence of known but uncommon proteomic profiles. Such classification and quantification will be highly useful in identifying specific subpopulations of synapses exhibiting plasticity in response to perturbations from the environment or the sensory periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号