首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Mur ligases play an essential role in the intracellular biosynthesis of bacterial peptidoglycan, the main component of the bacterial cell wall, and represent attractive targets for the design of novel antibacterials. UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD) catalyses the addition of D-glutamic acid to the cytoplasmic intermediate UDP-N-acetylmuramoyl-L-alanine (UMA) and is the second in the series of Mur ligases. MurD ligase is highly stereospecific for its substrate, D-glutamic acid (D-Glu). Here, we report the high resolution crystal structures of MurD in complexes with two novel inhibitors designed to mimic the transition state of the reaction, which contain either the D-Glu or the L-Glu moiety. The binding modes of N-sulfonyl-D-Glu and N-sulfonyl-L-Glu derivatives were also characterised kinetically. The results of this study represent an excellent starting point for further development of novel inhibitors of this enzyme.  相似文献   

2.
Liew HC  Khoo HE  Moore PK  Bhatia M  Lu J  Moochhala SM 《Life sciences》2007,80(18):1664-1668
Stonustoxin (SNTX) is a 148 kDa, dimeric, hypotensive and lethal protein factor isolated from the venom of the stonefish Synanceja horrida. SNTX (10-320 ng/ml) progressively causes relaxation of endothelium-intact, phenylephrine (PE)-precontracted rat thoracic aortic rings. The SNTX-induced vasorelaxation was inhibited by L-N(G)-nitro arginine methyl ester (L-NAME), suggesting that nitric oxide (NO) contributes to the SNTX-induced response. Interestingly, D, L-proparglyglycine (PAG) and beta-cyano-L-alanine (BCA), irreversible and competitive inhibitors of cystathionine-gamma-lyase (CSE) respectively, also inhibited SNTX-induced vasorelaxation, indicating that H(2)S may also play a part in the effect of SNTX. The combined use of L-NAME with PAG or BCA showed that H(2)S and NO act synergistically in effecting SNTX-induced vasorelaxation.  相似文献   

3.
Somatic angiotensin I-converting enzyme (s-ACE) plays a central role in blood pressure regulation and has been the target of most antihypertensive drugs. A displacement isothermal titration calorimetry method has been used to accurately determine the binding constant of three strong s-ACE inhibitors. Under the experimental conditions studied in this work, the relative potency of the inhibitors was determined to be enalaprilat>lisinopril>captopril. We analyze the thermodynamic behaviour of the binding process using the new structural information provided by the ACE structures, as well as the conformational changes that occur upon binding.  相似文献   

4.
We have studied the regulatory function of Dictyostelium discoideum Ax2 phenylalanine hydroxylase (dicPAH) via characterization of domain structures. Including the full-length protein, partial proteins truncated in regulatory, tetramerization, or both, were prepared from Escherichia coli as his-tag proteins and examined for oligomeric status and catalytic parameters for phenylalanine. The proteins were also expressed extrachromosomally in the dicPAH knockout strain to examine their in vivo compatibility. The results suggest that phenylalanine activates dicPAH, which is functional in vivo as a tetramer, although cooperativity was not observed. In addition, the results of kinetic study suggest that the regulatory domain of dicPAH may play a role different from that of the domain in mammalian PAH.

Structured summary of protein interactions

dicPAH and dicPAHbind by molecular sieving (View Interaction: 1, 2, 3, 4)  相似文献   

5.
Biosynthesis of lysine and meso-diaminopimelic acid in bacteria provides essential components for protein synthesis and construction of the bacterial peptidoglycan cell wall. The dapE operon enzymes synthesize both meso-diaminopimelic acid and lysine and, therefore, represent potential targets for novel antibacterials. The dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase functions in a late step of the pathway and converts N-succinyl-l,l-diaminopimelic acid to l,l-diaminopimelic acid and succinate. Deletion of the dapE gene is lethal to Helicobacter pylori and Mycobacterium smegmatis, indicating that DapE's are essential for cell growth and proliferation. Since there are no similar pathways in humans, inhibitors that target DapE may have selective toxicity against only bacteria. A major limitation in developing antimicrobial agents that target DapE has been the lack of structural information. Herein, we report the high-resolution X-ray crystal structures of the DapE from Haemophilus influenzae with one and two zinc ions bound in the active site, respectively. These two forms show different activity. Based on these newly determined structures, we propose a revised catalytic mechanism of peptide bond cleavage by DapE enzymes. These structures provide important insight into catalytic mechanism of DapE enzymes as well as a structural foundation that is critical for the rational design of DapE inhibitors.  相似文献   

6.
The antigenic polysaccharide was obtained from the cell wall of Eubacterium saburreum strain T15 by trypsin digestion followed by gel permeation and ion-exchange chromatography. Its structure was determined using acid hydrolysis, methylation analysis, and 1D and 2D NMR spectroscopy. It contained L-threo-pent-2-ulose (Xul), D-fucose (Fuc), and D-glycero-D-galacto-heptose (Hep) in 2:3:3 ratio. Methylation analysis indicated an octasaccharide repeating-unit containing five branches. The 1H and 13C signals in NMR spectra of the sugar residues were assigned by COSY, HOHAHA, and HMQC 2D experiments, and the sequence of sugar residues in the repeating unit was determined by NOESY and HMBC experiments. The polysaccharide also contains two O-acetyl groups in the repeating unit, located on the Hep residue. The repeating structure can be written as: [see text for equation]. This is a novel structure in bacterial cell-wall polysaccharides from Gram-positive bacteria.  相似文献   

7.
The lectin from Pseudomonas aeruginosa (PA-IIL) is involved in host recognition and biofilm formation. Lectin not only displays an unusually high affinity for fucose but also binds to L-fucose, L-galactose and D-arabinose that differ only by the group at position 5 of the sugar ring. Isothermal calorimetry experiments provided precise determination of affinity for the three methyl-glycosides and revealed a large enthalpy contribution. The crystal structures of the complexes of PA-IIL with L-galactose and Met-beta-D-arabinoside have been determined and compared with the PA-IIL/fucose complex described previously. A combination of the structures and thermodynamics provided clues for the role of the hydrophobic group in affinity.  相似文献   

8.
1,6-Anhydro-3,4-O-isopropylidene-1-thio-D-mannitol was converted into its sulfoxide which after hydrolysis, acetylation and subsequent Pummerer rearrangement gave the penta-O-acetyl-1-thio-D-mannoseptanose anomers in excellent yield. This anomeric mixture was used as donor for the glycosylation of 4-nitro- and 4-cyanobenzenethiol in the presence of boron trifluoride etherate and trimethylsilyl triflate, respectively, to yield the corresponding thioseptanosides in high yield. The same strategy was applied for the synthesis of the corresponding L-idothioseptanosides using 1,6-anhydro-3,4-O-isopropylidene-1-thio-L-iditol as starting material. The penta-O-acetyl-D-glucothioseptanose donors could not be synthesised the same way, as the Pummerer reaction of the corresponding tetra-O-acetyl-1,6-thioanhydro-1-thio-D-glucitol sulfoxides led to an inseparable mixture of the corresponding L-gulo- and D-glucothioseptanose anomers. Therefore, D-glucose diethyl dithioacetal was converted via its 2,3,4,5-tetra-O-acetyl-6-S-acetyl derivative into an anomeric mixture of its 6-thio-septanose and -furanose peracetates which could be separated by column chromatography. Condensation of the 6-thio-glucoseptanose peracetates with 4-cyano- and 4-nitrobenezenethiol in the presence of boron trifluoride etherate afforded anomeric mixtures of the corresponding thioseptanosides. The D-manno-, L-ido- and D-glucothioseptanosides obtained after Zemplén deacetylation of these mixtures were tested for their oral antithrombotic activity.  相似文献   

9.
l-Xylulose was used as a raw material for the production of l-xylose with a recombinantly produced Escherichia colil-fucose isomerase as the catalyst. The enzyme had a very alkaline pH optimum (over 10.5) and displayed Michaelis-Menten kinetics for l-xylulose with a Km of 41 mM and a Vmax of 0.23 μmol/(mg min). The half-lives determined for the enzyme at 35 °C and at 45 °C were 6 h 50 min and 1 h 31 min, respectively. The reaction equilibrium between l-xylulose and l-xylose was 15:85 at 35 °C and thus favored the formation of l-xylose. Contrary to the l-rhamnose isomerase catalyzed reaction described previously [14]l-lyxose was not detected in the reaction mixture with l-fucose isomerase. Although xylitol acted as an inhibitor of the reaction, even at a high ratio of xylitol to l-xylulose the inhibition did not reach 50%.  相似文献   

10.
Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects.  相似文献   

11.
High doses of diazepam (10.0-20.0 mg/kg) were shown to reduce the volume of acute inflammatory paw edema in rats as a response to carrageenan administration. This effect was attributed to an action of diazepam on the peripheral-type benzodiazepine receptor (PBR) present in the adrenal and/or immune/inflammatory cells. The present study was undertaken to analyze the involvement of nitric oxide (NO) on the effects of diazepam on carrageenan-induced paw edema in rats (CIPE) and to look for the presence of PBR and inducible/constitutive NO synthases (NOS) on slices taken from the inflamed paws of diazepam-treated rats. For that, an acute inhibition of NO biosynthesis was achieved using 50.0 mg/kg No mega-nitro-L-arginine (L-NAME), L-arginine (300.0 mg/kg), the true precursor of NO, and D-arginine (300.0 mg/kg), its false substrate, were also used. The following results were obtained: (1) diazepam (10.0 and 20.0 mg/kg) decreased CIPE values in a dose- and time-dependent way; (2) diazepam effects on CIPE were increased by L-NAME pretreatment; (3) treatment with L-arginine but not with D-arginine reverted at least in part the decrements of CIPE values observed after diazepam administration; (4) PBR were found in endothelial and inflammatory cells that migrated to the inflammatory site at the rat paw; (5) confocal microscopy showed the presence of both PBR and NOS in endothelial and inflammatory cells taken from inflamed paw tissues of rats treated with diazepam a finding not observed in tissues provided from rats treated with diazepam's control solution. These results suggest an important role for NO on the effects of diazepam on CIPE. Most probably, these effects reflect a direct action of diazepam on PBR present in the endothelium of the microvascular ambient and/or on immune/inflammatory cells. An action like that would lead, among other factors, to a decrease in NO, generated by NO synthase, and thus in the mechanisms responsible for CIPE.  相似文献   

12.
The transport of l-leucine, l-phenylalanine and l-alanine by the perfused lactating rat mammary gland has been examined using a rapid, paired-tracer dilution technique. The clearances of all three amino acids by the mammary gland consisted of a rising phase followed by a rapid fall-off, respectively, reflecting influx and efflux of the radiotracers. The peak clearance of l-leucine was inhibited by BCH (65%) and d-leucine (58%) but not by l-proline. The inhibition of l-leucine clearance by BCH and d-leucine was not additive. l-leucine inhibited the peak clearance of radiolabelled l-leucine by 78%. BCH also inhibited the peak clearance of l-phenylalanine (66%) and l-alanine (33%) by the perfused mammary gland. Lactating rat mammary tissue was found to express both LAT1 and LAT2 mRNA. The results suggest that system L is situated in the basolateral aspect of the lactating rat mammary epithelium and thus probably plays a central role in neutral amino acid uptake from blood. The finding that l-alanine uptake by the gland was inhibited by BCH suggests that LAT2 may make a significant contribution to neutral amino acid uptake by the mammary epithelium.  相似文献   

13.
Tsai YC  Chou YC  Wu AB  Hu CM  Chen CY  Chen FA  Lee JA 《Life sciences》2006,78(12):1385-1391
In researches of ketone bodies, D-3-hydroxybutyrate (D-3HB) is usually the major one which has been investigated; in contrast, little attention has been paid to L-3-hydroxybutyrate (L-3HB), because of its presence in trace amounts, its dubious metabolism, and a lack of knowledge about its sources. In the present study we determined the distributions of enantiomers of 3-hydroxybutyrate (3HB) in rat brain, liver, heart, and kidney homogenates, and we found the heart homogenate contained an enriched amount of L-3HB (37.67 microM/mg protein) which generated a significant ratio of 66/34 (D/L). The ratio was altered to be 87/13 in the diabetic rat heart homogenate. We subsequently found this changed ratio of D/L-3HB may contribute to reduce glucose utilization in cardiomyocytes. Glucose utilization by cardiomyocytes with 5 mM of D-3HB was decreased to 61% of the control, but no interference was observed when D-3HB was replaced with L-3HB, suggesting L-3HB is not utilized for the energy fuel as other ketone bodies are. In addition, the reduced glucose utilization caused by D-3HB gradually recovered in a dose-dependent manner with administration of additional L-3HB. The results gave the necessity of taking L-3HB together with D-3HB into account with regard to glucose utilization, and L-3HB may be a helpful substrate for improving inhibited cardiac pyruvate oxidation caused by hyperketonemia.  相似文献   

14.
Achacin, which belongs to the L-amino acid oxidase group, oxidizes free amino acids and produces hydrogen peroxide in cell culture systems. Morphological changes in cells incubated with achacin were similar to those of cells incubated with H(2)O(2). In both cases, the end result was cell death. To examine the mechanism of achacin-associated cytotoxicity, the H(2)O(2) scavenger catalase was added to culture media. Features typical of apoptosis, including morphological changes, DNA fragmentation, and PARP cleavage, were observed when cells were incubated with achacin in the presence of catalase. Moreover, apoptosis was inhibited by Z-VAD-fmk, a broad-spectrum caspase inhibitor. Herein, we present evidence that two pathways are involved in achacin-induced cell death. One is direct generation of H(2)O(2) through the L-amino acid oxidase activity of achacin. The other is the caspase-mediated apoptotic pathway that is induced by depletion of L-amino acids by achacin.  相似文献   

15.
Lim YR  Yeom SJ  Kim YS  Oh DK 《Bioresource technology》2011,102(5):4277-4280
The optimum conditions for the production of l-arabinose from debranched arabinan were determined to be pH 6.5, 75 °C, 20 g l−1 debranched arabinan, 42 U ml−1 endo-1,5-α-l-arabinanase, and 14 U ml−1 α-l-arabinofuranosidase from Caldicellulosiruptor saccharolyticus and the conditions for sugar beet arabinan were pH 6.0, 75 °C, 20 g l−1 sugar beet arabinan, 3 U ml−1 endo-1,5-α-l-arabinanase, and 24 U ml−1 α-l-arabinofuranosidase. Under the optimum conditions, 16 g l−1l-arabinose was obtained from 20 g l−1 debranched arabinan or sugar beet arabinan after 120 min, with a hydrolysis yield of 80% and a productivity of 8 g l−1 h−1. This is the first reported trial for the production of l-arabinose from the hemicellulose arabinan by the combined use of endo- and exo-arabinanases.  相似文献   

16.
Erythroascorbic acid (eAsA) is a five-carbon analog of ascorbic acid, and it is synthesized from D-arabinose by D-arabinose dehydrogenase (ARA) and D-arabinono-gamma-lactone oxidase. We found an NAD+-specific ARA activity which is operative under submillimolar level of d-arabinose in the extracts of Saccharomyces cerevisiae. The hypothetical protein encoded by YMR041c showed a significant homology to a l-galactose dehydrogenase which plays in plant ascorbic acid biosynthesis, and we named it as Ara2p. Recombinant Ara2p showed NAD+-specific ARA activity with Km=0.78 mM to d-arabinose, which is 200-fold lower than that for the conventional NADP+-specific ARA, Ara1p. Gene disruptant of ARA2 lost entire NAD+-specific ARA activity and the conspicuous increase in intracellular eAsA by exogenous d-arabinose feeding, while the double knockout mutant of ARA1 and ARA2 still retained measurable amount of eAsA. It demonstrates that Ara2p, not Ara1p, mainly contributes to the production of eAsA from d-arabinose in S. cerevisiae.  相似文献   

17.
An efficient and practical route for the large-scale synthesis of 2-deoxy-L-erythro-pentose (2-deoxy-L-ribose) starting from L-arabinose was developed using Barton-type free-radical deoxygenation reaction as a key step. The radical precursor, a phenoxythiocarbonyl ester, was prepared in situ, and the most efficient deoxygenation was achieved by slow addition of tributyltin hydride to the reaction mixture.  相似文献   

18.
l-Lactate oxidase (LOX) belongs to a family of flavin mononucleotide (FMN)-dependent α-hydroxy acid-oxidizing enzymes. Previously, the crystal structure of LOX (pH 8.0) from Aerococcus viridans was solved, revealing that the active site residues are located around the FMN. Here, we solved the crystal structures of the same enzyme at pH 4.5 and its complex with d-lactate at pH 4.5, in an attempt to analyze the intermediate steps. In the complex structure, the d-lactate resides in the substrate-binding site, but interestingly, an active site base, His265, flips far away from the d-lactate, as compared with its conformation in the unbound state at pH 8.0. This movement probably results from the protonation of His265 during the crystallization at pH 4.5, because the same flip is observed in the structure of the unbound state at pH 4.5. Thus, the present structure appears to mimic an intermediate after His265 abstracts a proton from the substrate. The flip of His265 triggers a large structural rearrangement, creating a new hydrogen bonding network between His265-Asp174-Lys221 and, furthermore, brings molecular oxygen in between d-lactate and His265. This mimic of the ternary complex intermediate enzyme-substrate-O2 could explain the reductive half-reaction mechanism to release pyruvate through hydride transfer. In the mechanism of the subsequent oxidative half-reaction, His265 flips back, pushing molecular oxygen into the substrate-binding site as the second substrate, and the reverse reaction takes place to produce hydrogen peroxide. During the reaction, the flip-flop action of His265 has a dual role as an active base/acid to define the major chemical steps. Our proposed reaction mechanism appears to be a common mechanistic strategy for this family of enzymes.  相似文献   

19.
Alternansucrase (EC 2.4.1.140) is a d-glucansucrase that synthesizes an alternating alpha-(1-->3), (1-->6)-linked d-glucan from sucrose. It also synthesizes oligosaccharides via d-glucopyranosyl transfer to various acceptor sugars. Two of the more efficient monosaccharide acceptors are D-tagatose and L-glucose. In the presence of d-tagatose, alternansucrase produced the disaccharide alpha-d-glucopyranosyl-(1-->1)-beta-D-tagatopyranose via glucosyl transfer. This disaccharide is analogous to trehalulose. We were unable to isolate a disaccharide product from L-glucose, but the trisaccharide alpha-D-glucopyranosyl-(1-->6)-alpha-d-glucopyranosyl-(1-->4)-l-glucose was isolated and identified. This is analogous to panose, one of the structural units of pullulan, in which the reducing-end D-glucose residue has been replaced by its L-enantiomer. The putative L-glucose disaccharide product, produced by glucoamylase hydrolysis of the trisaccharide, was found to be an acceptor for alternansucrase. The disaccharide, alpha-D-glucopyranosyl-(1-->4)-L-glucose, was a better acceptor than maltose, previously the best known acceptor for alternansucrase. A structure comparison of alpha-D-glucopyranosyl-(1-->4)-L-glucose and maltose was performed through computer modeling to identify common features, which may be important in acceptor affinity by alternansucrase.  相似文献   

20.
The enzyme L-asparaginase (ASNASE), which hydrolyzes L-asparagine (L-Asn) to ammonia and L-aspartic acid (L-Asp), is commonly used for remission induction in acute lymphoblastic leukemia. To correlate ASNASE activity with L-Asn reduction in human serum, sensitive methods for the determination of ASNASE activity are required. Using L-aspartic beta-hydroxamate (AHA) as substrate we developed a sensitive plate reader-based method for the quantification of ASNASE derived from Escherichia coli and Erwinia chrysanthemi and of pegylated E. coli ASNASE in human serum. ASNASE hydrolyzed AHA to L-Asp and hydroxylamine, which was determined at 710 nm after condensation with 8-hydroxyquinoline and oxidation to indooxine. Measuring the indooxine formation allowed the detection of 2 x 10(-5)U ASNASE in 20 microl serum. Linearity was observed within 2.5-75 and 75-1,250 U/L with coefficients of correlation of r(2)>0.99. The coefficients of variation for intra- and interday variability for the three different ASNASE enzymes were 1.98 to 8.77 and 1.73 to 11.0%. The overall recovery was 101+/-9.92%. The coefficient of correlation for dilution linearity was determined as r(2)=0.986 for dilutions up to 1:20. This method combined with sensitive methods for the quantification of L-Asn will allow bioequivalence studies and individualized therapeutic drug monitoring of different ASNASE preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号