首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genes for two enzymes in the thymidine salvage pathway, thymine-7-hydroxylase (THase; official name thymine dioxygenase) and iso-orotate decarboxylase (IDCase) have been isolated from fungal sources. THase was isolated from a Rhodotorula glutinis cDNA library using a degenerate oligonucleotide based on the published amino acid sequence. The coding sequence was transferred to an Escherichia coli expression system, from which recombinant THase activity was measured using 14C-labeled thymine. The THase sequence shows an almost complete avoidance of codons ending in A or T: 95.8% GC content is present in the third position of codons. A connection between this codon bias and the role of the thymidine salvage pathway in pyrimidine metabolism is proposed. The THase sequence is similar to Group I Fe+2-dependent, alphaKG-dependent dioxygenases. The R. glutinis THase gene was used to locate the probable THase genes in the sequenced genomes of Neurospora crassa and Aspergillus nidulans. The genes neighboring THase in these two genomes are similar to each other, and are similar to the mammalian 2-amino-3-carboxymuconate-6-semialdhyde decarboxylase (ACMSD), leading to their identification as IDCase genes. The N. crassa version was isolated by PCR of genomic DNA, and IDCase activity was measured in recombinant E. coli carrying this gene. A new family of decarboxylases, using similar substrates, is identified by virtue of the protein sequence similarity.  相似文献   

2.
3.
4.
5.
6.
The pyr-4 gene of Neurospora crassa encodes orotidine-5' -phosphate decarboxylase, which catalyses the sixth step in the pyrimidine biosynthetic pathway. The complete nucleotide sequence of a 1.8-kb genomic fragment containing the pyr-4 gene has been determined. Using transposon mutagenesis, the coding region has been identified, and the amino acid (aa) sequence deduced. Comparison of the pyr-4 aa sequence with URA3, the equivalent gene of Saccharomyces cerevisiae, showed extensive blocks of homology, with non-homologous sequences between these blocks being generally much longer in Neurospora than in yeast. Computer-predicted protein secondary structure of pyr-4 and URA3 was conserved within equivalent blocks. Upstream sequences of pyr-4 were compared with other sequenced Neurospora genes and possible promoter sequences identified.  相似文献   

7.
3-Dehydroshikimate dehydratase catalyzes the third reaction in the inducible quinic acid catabolic pathway of Neurospora crassa and is encoded in the qa-4 gene of the qa gene cluster. As part of continuing genetic and biochemical studies concerning the organization and regulation of this gene cluster, 3-dehydroshikimate dehydratase has been purified and characterized biochemically. The enzyme was purified 1650-fold using the following techniques: 1) (NH4)2SO4 fractionation; 2) ion exchange chromatography on DEAE-cellulose; 3) gel filtration on Sephadex G-100; 4) ion exchange chromatography on Cellex QAE (quaternary aminoethyl); and 5) hydroxylapatite chromatography. 3-Dehydroshikimate dehydratase is a monomer with a molecular weight of about 37,000 and a sedimentation coefficient of 3.27 S. It has a Km value of 5.9 X 10(-4) and an average isoelectric point of 4.92. The purified enzyme is extremely sensitive to thermal denaturation but can be significantly stabilized by Mg2+ ions. The purified enzyme also exhibits maximal catalytic activity only when assayed in the presence of certain divalent cations, e.g. magnesium. The NH2-terminal residue of 3-dehydroshikimate dehydratase is proline, and its alpha-amino group is unblocked.  相似文献   

8.
9.
10.
Summary The nnu mutant of Gibberella zeae (= Fusarium graminearum) is unable to catabolize many of the nitrogen sources utilized by its wild-type parent, and may have suffered a mutation in the major nitrogen regulatory locus. Transformation of this mutant with the major nitrogen regulatory gene from Neurospora crassa, nit-2, restored the wild-type phenotype, thus confirming that the nnu mutation is in the major nitrogen regulatory locus of G. zeae. Our results are consistent with the premise of conservation of the structure of regulatory factors and suggest the possibility that functional DNA homologues of this regulatory element occur across a broad range of ascomycetous fungi.  相似文献   

11.
12.
Catabolic dehydroquinase which functions in the inducible quinic acid catabolic pathway in Neurospora crassa has been purified 8000-fold. The enzyme was purified by two methods. One used heat denaturation of contaminating proteins; the other used antibody affinity chromatography. The preparations obtained by these two methods were identical by all criteria. The purified enzyme is extremely resistant to thermal denaturation as well as denaturation 0y urea and guanidine hydrochloride at 25 degrees. It is irreversibly inactivated, although not efficiently dissociated, by sodium dodecyl sulfate and guanidine hydrochloride at 55 degrees. At pH 3.0, the enzyme is reversibly dissociated into inactive subunits. At high concentrations catabolic dehydroquinase aggregates into an inactive, high molecular weight complex. The native enzyme, which has a very high specific activity, has a molecular weight of approximately 220,000 and is composed of identical subunits of 8,000 to 12,000 molecular weight each. The native enzyme and the subunit are both asymmetric.  相似文献   

13.
Summary A UV-sensitive mutant has been isolated from UV-mutagenized conidia of Neurospora crassa. The mutation responsible for the lesion was mapped in linkage group VL, proximal to the nucleolus organizer region. We designated the mutant mus-18. The sensitivity of the mus-18 mutant to UV-irradiation was not particularly high, being less than twice that of the wild-type strain. However, the frequency of mutations at the ad-3 loci induced by UV was extremely high even at low doses, under conditions where survival rates of mus-18 cells were almost identical to those of wild-type cells. Photoreactivation of UV damage was normal in the mus-18 mutant. Sensitivity to other mutagens, such as gamma rays, 4-nitroquinoline-1-oxide, N-methyl-N-nitro-N-nitrosoguanidine, mitomycin C and methyl methanesulfonate, was similar to that of the wild type. Fertility of the mus-18 mutant was normal in homozygous crosses. These results suggest that mus-18 is an excision-repair mutant. Measurement of endonuclease-sensitive sites (ESS) after liquid-holding recovery from UV damage revealed that ESS remained unrepaired for longer than 18 h in the mus-18 mutant, while most were eliminated within 6 h in wild-type cells and in other UV-sensitive mutants. This result suggests that mus-18 is defective in the incision step of dimer excision. The mus-18 mutant provides the first example of an excision-defective mutation in eukaryotes, which is specific to UV damage.  相似文献   

14.
15.
16.
17.
18.
We have demonstrated the co-purification in constant ratio of all five activities of the pentafunctional arom enzyme complex from Neurospora crassa. Progressive inactivation of the 3-dehydroquinate synthase component of the purified enzyme complex by chelating agents was blocked by the substrate, 3-deoxy-D-arabino-heptulosonate 7-phosphate, but not by the cofactor NAD+. Full activity was restored at Zn2+ concentrations as low as 0.05 nM. Atomic absorption data indicated that the intact enzyme complex contained 1 atom per subunit of tightly bound zinc. The arom 3-dehydroquinate synthase had a calculated turnover number of 19s-1, this being within the narrow range of values obtained for the other four activities of the intact multifunctional enzyme. The Km for 3-deoxy-D-arabino-heptulosonate 7-phosphate was 1.4 microM in a phosphate-free buffer; inorganic phosphate was a competitive inhibitor with respect to 3-deoxy-D-arabino-heptulosonate 7-phosphate.  相似文献   

19.
20.
H Lee  Y H Fu  G A Marzluf 《Biochemistry》1990,29(37):8779-8787
The nitrogen regulatory circuit of Neurospora crassa contains structural genes that encode nitrogen catabolic enzymes which are subject to complex genetic and metabolic regulation. This set of genes is controlled by nitrogen limitation, by specific induction, and by the action of nit-2, a major positive-acting regulatory gene, and nmr, a negative-acting control gene. The complete nucleotide sequence of alc, the gene that encodes allantoicase, a purine catabolic enzyme, is presented. The alc gene contains a single intron, is transcribed from two initiation sites situated approximately 50 nb upstream of the translation start site, and encodes a protein comprised of 354 amino acids. Mobility shift and DNA footprint experiments identified a single binding site for the NIT2 regulatory protein in the alc promoter region. The binding site contains a 10 nucleotide base pair symmetrical sequence which is flanked by two possible core binding sequences, TATCT and TATCG. Mutant NIT2/beta-gal fusion proteins with amino acid substitutions in a putative zinc-finger motif were shown to be completely deficient in the ability to bind to the alc promoter DNA fragment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号