共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
K Sutoh 《Biochemistry》1983,22(7):1579-1585
When the rigor complex of actin and myosin subfragment 1 (S1) was treated with a zero-length cross-linker, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide, covalently linked complexes of actin and S1 heavy chain with apparent molecular weights of 165,000 and 175,000 were generated. Measurements of the molar ratio of actin to S1 heavy chain in the 165K and 175K products showed that they were 1:1 complexes of actin and S1 heavy chain. Chemical cleavages of the cross-linked products followed by peptide mappings revealed that two distinct segments of S1 heavy chain spanning the 18K-20K region and the 27K-35K region from its C terminus participated in cross-linking with actin. Cross-linking of actin to the former site generated the 165K peptide while the latter site was responsible for generating the 175K peptide. 相似文献
3.
The free heavy chain of vertebrate skeletal myosin subfragment 1 shows full enzymatic activity 总被引:15,自引:0,他引:15
Vertebrate skeletal fast-twitch muscle myosin subfragment 1 is comprised of a heavy polypeptide chain of 95,000 daltons and one alkali light chain of either 21,000 daltons (A1) or 16,500 daltons (A2). In the present study, the heavy chain of subfragment 1 has been separated from the alkali light chain under nondenaturing conditions resembling those in vivo. The heavy chain exhibits the same ATPase activity as myosin subfragment 1, indicating that the heavy chain alone contains the catalytic site for ATP hydrolysis and that the alkali light chains are nonessential for activity. The free heavy chain associates readily at 4 degrees C or 37 degrees C with free A1 or A2 to form the subfragment 1 isozymes SF1(A1) or SF1(A2) respectively. Actin activates the MgATPase activity of the heavy chain in the same manner as occurs with the native isozyme, indicating that the heavy chain possesses the actin binding domain. 相似文献
4.
The alkali light chain, A2, in subfragment-1 (S-1) was exchanged with A1 added externally in NH4 + -NH3 buffer (pH 9.9). The exchange yield was higher than 80% using only 2-fold molar excess of A1 over S-1 containing A2. The ATPase activities of the exchanged S-1 (A1) were the same as those of untreated S-1 (A1). The method was also applicable to exchanging the alkali light chains in myosin. 相似文献
5.
Modification of the free alkali light chains of myosin by iodoacetylation results in a much lower extent of exchange into myosin subfragment 1 by the thermal hybridization procedure (Burke, M., and Sivaramakrishnan, M. (1981) Biochemistry 20, 5908-5913). As reported by others (Wagner, P. D., and Stone, D. B. (1983) J. Biol. Chem. 258, 8876-8882), free alkali light chains modified by iodoacetate at their single sulfhydryl residue exhibit minimal exchange into intact myosin. However, when unmodified alkali light chain is used to probe for exchange, close to the theoretical limit of exchange is observed for subfragment 1, and significant levels of exchange are found for myosin. It appears that modification of the free alkali light chain alters the structure of the protein, and this causes either a marked reduction in its affinity for the heavy chain or in its ability to enter the light chain binding site. This conclusion is supported by tryptic digestions done on the unmodified and modified free light chains where it is found that the latter is degraded at a much faster rate, indicating a more open structure for the modified protein. The observation that alkali light chain exchanges into myosin when unmodified alkali light chains are used indicates that the presence of the associated 5,5'-dithiobis-(2-nitrobenzoic acid) light chains does not preclude the reversible dissociation of this subunit from myosin under ionic and temperature conditions approaching the physiological state. 相似文献
6.
7.
Proximity of alkali light chains to 27K domain of the heavy chain in myosin subfragment 1 总被引:3,自引:0,他引:3
J P Labbe D Mornet P Vandest R Kassab 《Biochemical and biophysical research communications》1981,102(1):466-475
When myosin chymotryptic subfragment-1 was treated with dimethyl-suberimidate or dithiobis (succinimidylpropionate) under nearly physiological ionic conditions, the alkali light chains A1 and A2 were selectively and intramolecularly cross-linked to the 95K heavy chain. Experimental conditions were developed with both reagents for optimal production of A1 and A2-containing dimers. After conversion of reversibly cross-linked S-1 (A1+A2) into (27K-50K-20K)-S-1 derivative by restricted tryptic proteolysis, the light chains were found to be attached to the NH2-terminal 27K segment of the heavy chain. 相似文献
8.
The heavy chain of myosin's subfragment 1 (S1) was cleaved at two distinct sites (termed V1 and V2) after irradiation with UV light in the presence of millimolar concentrations of vanadate and in the absence of nucleotides or divalent metals. The V1 site cleavage appeared to be identical with the previously described active site cleavage at serine-180, which is effected by irradiation of a photomodified form of the S1-MgADP-Vi complex [Cremo, C. R., Grammer, J. C., & Yount, R. G. (1989) J. Biol. Chem. 264, 6608-6011]. The V2 site was cleaved specifically, without cleavage at the V1 site, first by formation of the light-stable S1-Co2+ADP-Vi complex at the active site [Grammer, J. C., Cremo, C. R., & Yount, R. G. (1988) Biochemistry 27, 8408-8415] and then by irradiation in the presence of millimolar vanadate. By gel electrophoresis, the V2 site was localized to a region about 20 kDa from the COOH terminus of the S1 heavy chain. From the results of tryptic digestion experiments, the COOH-terminal V2 cleavage peptide appeared to contain lysine-636 in the linker region between the 50- and 20-kDa tryptic peptides of the heavy chain. This site appeared to be the same site cleaved by irradiation of S1 (not complexed with Co2+ADP-Vi) in the presence of millimolar vanadate as previously described [Mocz, G. (1989) Eur. J. Biochem. 179, 373-378]. Cleavage at the V2 site was inhibited by Co2+ but was not significantly affected by the presence of nucleotides or Mg2+ ions. Tris buffer significantly inhibited V2 cleavage. From the results of UV-visible absorption, 51V NMR, and frozen-solution EPR spectral experiments, it was concluded that irradiation with UV light reduced vanadate +5 to the +4 oxidation state, which was then protected from rapid reoxidation by O2 by complexation with the Tris buffer. The relatively stable reduced form or forms of vanadium were not competent to cleave S1 at either the V1 or the V2 site. 51V NMR titration experiments indicated that a tetrameric species of vanadium preferentially bound to S1 and to the S1-MgADP-Vi complex, whereas no binding of either the monomeric or dimeric species could be detected. These results suggest that the vanadate tetramer was responsible for the photocleavage of S1 which occurred at both the V1 and V2 sites in the absence of nucleotides or divalent metals. 相似文献
9.
Polymerization of G-actin by myosin subfragment 1 总被引:3,自引:0,他引:3
The polymerization of actin from rabbit skeletal muscle by myosin subfragment 1 (S-1) from the same source was studied in the depolymerizing G-actin buffer. The polymerization reactions were monitored in light-scattering experiments over a wide range of actin/S-1 molar rations. In contrast to the well resolved nucleation-elongation steps of actin assembly by KC1 and Mg2+, the association of actin in the presence of S-1 did not reveal any lag in the polymerization reaction. Light scattering titrations of actin with S-1 and vice versa showed saturation of the polymerization reaction at stoichiometric 1:1 ratios of actin to S-1. Ultracentrifugation experiments confirmed that only stoichiometric amounts of actin were incorporated into a 1:1 acto-S-1 polymer even at high actin/S-1 ratios. These polymers were indistinguishable from standard complexes of S-1 with F-actin as judged by electron microscopy, light scattering measurements, and fluorescence changes observed while using actin covalently labeled with N-(1-pyrenyl)iodoacetamide. F-actin obtained by polymerization of G-actin by S-1 could initiate rapid assembly of G-actin in the presence of 10 mM KC1 and 0.5 mM MgCl2 and showed normal activation of MgATPase hydrolysis by myosin. 相似文献
10.
Identification of polyphosphate recognition sites communicating with actin sites on the skeletal myosin subfragment 1 heavy chain 总被引:3,自引:0,他引:3
Using the thrombin-cut [68-30 kilodalton (kDa)] myosin subfragment 1 (S-1) whose heavy chain has been selectively split within the central 50-kDa region, at Lys-560, with concomitant specific alterations of the ATPase and actin binding properties [Chaussepied, P., Mornet, D., Audemard, E., Derancourt, J., & Kassab, R. (1986) Biochemistry 25, 1134-1140; Chaussepied, P., Mornet, D., Barman, T., Travers, F., & Kassab, R. (1986) Biochemistry 25, 1141-1149], we have isolated and renatured the COOH-terminal 30-kDa fragment associated with the alkali light chains by the procedure recently described [Chaussepied, P., Mornet, D., Audemard, E., Kassab, R., Goodearl, J., Levine, B., & Trayer, I. P. (1986) Biochemistry 25, 4540-4547]. The 30-kDa peptide preparation was found to exhibit a crucial feature of the native S-1; namely, it interacts with F-actin in an adenosine 5'-triphosphate (ATP)-dependent manner. Studies by ultracentrifugation, turbidity measurements, and chemical cross-linking experiments showed that the acto-30-kDa peptide complex was dissociated almost completely by the gamma-phosphoryl group containing ligands ATP, 5'-adenylyl imidodiphosphate, and pyrophosphate, to a lesser extent by ADP, and not at all by AMP and inorganic phosphate. The maximal dissociating effect is operating with the thrombic 30-kDa entity, whereas the 22-kDa fragment produced by staphylococcal protease is only slightly dissociated. In contrast, the tryptic 20-kDa fragment binds irreversibly to actin.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
11.
It has been previously shown that in the M-MgADP-P(i) state, where the myosin head adopts a pre-power stroke conformation, treatment of trypsin-split subfragment 1 of skeletal muscle myosin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) results in cross-linking of the C-terminal fragment of the heavy chain of S1 -- most probably its converter region -- to the N-terminal S1 heavy-chain fragment, generating a product of 44 kDa [Biochim. Biophys. Acta 1481 (2000) 55]. The results described here show that this product is neither generated in the absence of nucleotide nor in the presence of MgADP or MgPP(i). The 44 kDa cross-linking product can be formed when S1 treated with EDC is complexed with MgADP-AlF(4) or MgADP-V(i) (MgADP-P(i) analogs) and with MgADP-BeF(x), MgATP gamma S or MgAMPPNP (MgATP analogs). The results suggest structural differences between MgATP- or MgADP-P(i)-bound S1, and MgADP-bound or nucleotide-free S1, in spatially close regions of their N- and C-terminal heavy-chain fragments. 相似文献
12.
Isolation of messenger ribonucleic acid for myosin heavy chain 总被引:2,自引:0,他引:2
13.
Limited digestion of filamentous myosin with chymotrypsin at 0 degrees C in the absence of divalent cations generates two forms of subfragment 1 (S1), with heavy chains of 95 kDa and 98 kDa. The difference is at the C-terminal end of the chain. The 98 kDa form prevails, in contrast to the preparations obtained by digestion at room temperature which consist of the shorter species and only traces of the longer one. The results support the idea of a temperature-dependent conformational transition at the head-rod junctional region of the myosin heavy chain. 相似文献
14.
M Crasnier 《FEBS letters》1987,211(1):31-34
Exchange of bound alkali light chains on myosin by free alkali light chains is described. It was found that the yield of hybrid obtained was dependent on the incubation time in 4.7 M NH4Cl at pH 9.5. 60% recovery of S1(A1) from S1(A2) was obtained using only a 2-fold molar excess of A1 over S1(A2). 相似文献
15.
A method of affinity chromatography based on the trapping of actin filaments within agarose gel beads is described. This method can be used for the purification of myosin and its active proteolytic subfragments, as well as for studies on the interaction between actin and these proteins. Actin columns stabilized by phalloidin bind myosin, heavy meromyosin (HMM), and heavy meromyosin subfragment 1 (HMM-S1) specifically and reversibly. The effect of pyrophosphate and KCl on the dissociation of actomyosin, acto-HMM, or acto-HMM-S1 complex is reported. We also describe the single-step purification of myosin from a crude rabbit psoas muscle extract. 相似文献
16.
The thermal unfolding of rabbit skeletal heavy meromyosin (HMM), myosin subfragment 1, and subfragment 2 has been studied by differential scanning calorimetry (DSC). Two distinct endotherms are observed in the DSC scan of heavy meromyosin. The first endotherm, with a Tm of 41 degrees C at pH 7.9 in 0.1 M KCl, is assigned to the unfolding of the subfragment 2 domain of HMM based on scans of isolated subfragment 2. The unfolding of the subfragment 2 domain is reversible both in the isolated form and in HMM. The unfolding of subfragment 2 in HMM can be fit as a single two-state transition with a delta Hvh and delta Hcal of 161 kcal/mol, indicating that subfragment 2 exists as a single domain in HMM. The unfolding of subfragment 2 is characterized by an extraordinarily large delta Cp of approximately 30,000 cal/(deg.mol). In the presence of nucleotides, the high-temperature HMM endotherm with a Tm of 48 degrees C shifts to higher temperature, indicating that this peak corresponds to the unfolding of the subfragment 1 domain. This assignment has been confirmed by comparison with isolated subfragment 1. The stabilizing effect of AMPPNP was significantly greater than that of ADP. The vanadate-trapped ADP species was slightly more stable than M.AMPPNP with a Tm at 58 degrees C. The unfolding of subfragment 1, both in the isolated form and in HMM, was irreversible. Only a single endotherm was noted in the DSC scans of the subfragment 1 domain of HMM and in freshly prepared subfragment 1 complexes.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
Ultraviolet irradiation above 300 nm of the stable MgADP-orthovanadate (Vi)-myosin subfragment 1 (S1) complex resulted in covalent modification of the S1 and in the rapid release of trapped MgADP and Vi. This photomodified S1 had Ca2+ATPase activity 4-5-fold higher than that of the non-irradiated control S1, while the K+EDTA-ATPase activity was below 10% of controls. There was a linear correlation between the activation of the Ca2+ATPase and the release of both ADP and Vi with irradiation time. Analysis of the total number of thiols and the ability of photomodified S1 to retrap MgADP by cross-linking SH1 and SH2 with various bifunctional thiol reagents indicated that the photomodification did not involve these reactive thiols. Irradiation of the S1-MgADP-Vi complex caused a large increase in absorbance of the enzyme at 270 nm which was correlated with the release of Vi from the active site, suggesting an aromatic amino acid(s) was (were) involved. However, analysis by three different methods showed no loss of tryptophan. All the irradiation-dependent phenomena could be prevented by replacing Mg2+ with either Co2+, Mn2+, or Ni2+. Unlike previous irradiation studies of Vi-dynein complexes [Lee-Eiford, A., Ow, R. A., & Gibbons, I. R. (1986) J. Biol. Chem. 261, 2337-2342], no peptide bonds were cleaved in photomodified S1. Photomodified S1 was able to retrap MgADP-Vi at levels similar to unmodified S1. Upon irradiation of the photomodified S1-MgADP-Vi complex, MgADP and Vi were again released from the active site, resulting in heavy chain cleavage to form NH2-terminal 21-kDa and COOH-terminal 74-kDa peptides. All evidence indicates that this new photomodification and subsequent chain cleavage occur specifically at the active site. 相似文献
18.
19.
The gamma-phosphoryl groups of two intermediates (M-ATP and M-ADP-P1) in the pathway of MgATP hydrolysis by myosin undergo extensive oxygen exchange with water. Actin activates the overall rate of hydrolysis at a rate-limiting step which follows these exchange reactions. Thus, actin, by decreasing the turnover time of hydrolysis, would be expected to proportionately decrease the time available for oxygen exchange. Using subfragment 1 of myosin, the turnover time of hydrolysis can be varied over a wide range by changing the concentration of actin. An estimate for the rate constant of exchange can then be obtained by relating these turnover times to measured values for oxygen exchange (incorporation of 18O from H218O into the inorganic phosphate (Pi) released by hydrolysis). The results of such an experiment, with turnover times between 0.2 and 25 s, indicate that, for each gamma-phosphoryl group, one oxygen from the medium is added rapidly (to cleave the phosphoryl group or form a pentacoordinate phosphroyl complex); two more oxygens exchange with a rate constant, kc, of about 1 s-1; and a fourth oxygen exchanges slowly with ke about 0.2 s-1. The higher value is about 18 times smaller than the rate constant, 5-3, for the reverse cleavage step of the myosin pathway, which is postulated to be responsible for oxygen exchange. The data, then, indicate that the rate-limiting step for oxygen exchange is not k-3, but may be the rate of rotation of oxygens around the phosphorus atom, with one oxygen severely restricted by its binding to the active site. The finding that kc differs for the four oxygens in each phosphate group is related to past observations on myosin-catalyzed oxygen exchange. 相似文献
20.
Cross-linking of the skeletal myosin subfragment 1 heavy chain to the N-terminal actin segment of residues 40-113 总被引:7,自引:0,他引:7
Glutaraldehyde (GA) and N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ), a hydrophobic, carboxyl group directed, zero-length protein cross-linker, were employed for the chemical cross-linking of the rigor complex between F-actin and the skeletal myosin S-1. The enzymatic properties and structure of the new covalent complexes obtained with both reagents were determined and compared to those known for the EDC-acto-S-1 complex. The GA- or EEDQ-catalyzed covalent attachment of F-actin to the S-1 heavy chain induced an elevated Mg2+-ATPase activity. The turnover rates of the isolated cross-linked complexes were similar to those for EDC-acto-S-1 (30 s-1). The solution stability of the new complexes is also comparable to that exhibited by EDC-acto-S-1. The proteolytic digestion of the isolated AEDANS-labeled covalent complexes and direct cross-linking experiments between actin and various preformed proteolytic S-1 derivatives indicated that, as observed with EDC, the COOH-terminal 20K and the central 50K heavy chain fragments are involved in the cross-linking reactions of GA and EEDQ. KI-depolymerized acto-S-1 complexes cross-linked by EDC, GA, or EEDQ were digested by thrombin which cuts only actin, releasing S-1 heavy chain-actin peptide cross-linked complexes migrating on acrylamide gels with Mr 100K (EDC), 110K and 105K (GA), and 102K (EEDQ); these were fluorescent only when fluorescent S-1 was used. They were identified by immunostaining with specific antibodies directed against selected parts of he NH2-terminal actin segment of residues 1-113.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献