首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quox-1 is the only gene in the hox family whose expression occurs throughout the development of the central nervous system. Using the Quox-1 homeodomain produced in a bacterial expression system, we were able to identify DNA-binding targets of the Quox-1 protein from a library of randomly generated oligonucleotides by the selection and amplification binding (SAAB) technique. The results indicated that the Quox-1 protein recognizes a new consensus sequence, 5'-CAATC-3', which has not been reported for any other Hox family homeoprotein. In addition, electromobility shift assay further confirmed that the Quox-1 homeoprotein preferentially binds to the 5'-CAATC-3' sequence, but not to the binding sites for other Hox class homeoprotein (TAAT) or NKX class homeoprotein (CAAG). Based on mutation analyses of the DNA sequences, we found that the 5'-CAATC-3' core sequences are required for high affinity binding by the Quox-1 protein. Furthermore, mutation analyses of the Quox-1 homeodomain showed that one of the major determinants participating in recognition of a minor groove is the Gln6 and Thr7 in the N-terminal arm of the homeodomain.  相似文献   

2.
Homeoproteins are defined by the structure of their DNA-binding domain, the homeodomain. Intercellular transfer of homeoprotein was observed ex vivo between animal cells and in vivo in higher plants. In the latter case, transfer is through intercytoplasmic channels that connect plant cells, but these do not exist in animals. Here, we show that the homeodomain of KNOTTED1, a maize homeoprotein, is transferred between animal cells and that a mutation in the homeodomain blocking the intercellular transfer of KNOTTED1 in plants also inhibits the transfer of the KNOTTED1 homeodomain in animal cells. This mutation decreases nuclear addressing, and its effect on nuclear import and intercellular transfer is reverted by the addition of an ectopic nuclear localization signal. We propose that, despite evolutionary distance and the differences in multicellular organization, similar mechanisms are at work for intercellular transfer of homeoprotein in plants and animals. Furthermore, our results suggest that, at least in animals, homeodomain secretion requires passage through the nucleus.  相似文献   

3.
4.
5.
6.
7.
A novel triple fusion reporter system for use in gene trap mutagenesis   总被引:1,自引:0,他引:1  
Gene trapping is an insertional mutagenesis strategy that allows for simultaneous gene identification and mutation in embryonic stem (ES) cells. Gene trap vectors both disrupt coding sequence and report on the genes' endogenous expression. The most popular gene trap reporter to date combines beta-galactosidase expression with neomycin resistance in a fusion protein known as beta-geo. Here we describe a refinement to this reporter that also incorporates real time fluorescent readouts. We have constructed a series of gene trap vectors incorporating a novel tripartite fusion protein consisting of EGFP, beta-galactosidase, and the neomycin or hygromycin resistance activities. Our results indicate that these triple fusions can function efficiently as reporters of endogenous trapped gene expression and subcellular localization. We show that these fusion proteins constitute versatile gene trap reporters whose activity can be detected in real time by fluorescence and in fixed tissue with a sensitive enzymatic activity.  相似文献   

8.
High-throughput gene trapping is a random approach for inducing insertional mutations across the mouse genome. This approach uses gene trap vectors that simultaneously inactivate and report the expression of the trapped gene at the insertion site, and provide a DNA tag for the rapid identification of the disrupted gene. Gene trapping has been used by both public and private institutions to produce libraries of embryonic stem (ES) cells harboring mutations in single genes. Presently, approximately 66% of the protein coding genes in the mouse genome have been disrupted by gene trap insertions. Among these, however, genes encoding signal peptides or transmembrane domains (secretory genes) are underrepresented because they are not susceptible to conventional trapping methods. Here, we describe a high-throughput gene trapping strategy that effectively targets secretory genes. We used this strategy to assemble a library of ES cells harboring mutations in 716 unique secretory genes, of which 61% were not trapped by conventional trapping, indicating that the two strategies are complementary. The trapped ES cell lines, which can be ordered from the International Gene Trap Consortium (http://www.genetrap.org), are freely available to the scientific community.  相似文献   

9.
10.
11.
Here we describe a novel gene trap protocol to screen for target genes that are regulated during inductive events in undifferentiated and differentiated mouse embryonic stem cells. This approach integrates several features that allows in vitro screening of large numbers of gene trap clones prior to generating lines of mutant mice. Moreover, targets of spatially and temporally restricted signaling pathways can be analyzed by screening undifferentiated ES cells versus ES cells differentiated into embryoid bodies. We employed this protocol to screen 1920 gene trap lines to identify targets and mediators of signaling through three growth factors of the TGFbeta superfamily--BMP2, activin and nodal. We identified two genes that are induced by BMP2 in a differentiation-dependent manner. One of the genes encodes for Chondroitin-4-sulfotransferase and displays a highly specific temporal and spatial expression pattern during mouse embryogenesis. These results demonstrate the feasibility of a high-throughput gene trap approach as a means to identify mediators and targets of multiple growth factor signaling pathways that function during different stages of development.  相似文献   

12.
BPAG1 (bullous pemphigoid antigen 1) was originally identified as a 230-kDa hemidesmosomal protein and belongs to the plakin family, because it consists of a plakin domain, a coiled-coil rod domain and a COOH-terminal intermediate filament binding domain. To date, alternatively spliced products of BPAG1, BPAG1e, and BPAG1n are known. BPAG1e is expressed in epithelial tissues and localized to hemidesmosomes, on the other hand, BPAG1n is expressed in neural tissues and muscles and has an actin binding domain at the NH(2)-terminal of BPAG1e. BPAG1 is also known as a gene responsible for Dystonia musculorum (dt) neurodegeneration syndrome of the mouse. Another plakin family protein MACF (microtubule actin cross-linking factor) has also an actin binding domain and the plakin domain at the NH(2)-terminal. However, in contrast to its high homology with BPAG1 at the NH(2)-terminal, the COOH-terminal structure of MACF, including a microtubule binding domain, resembles dystrophin rather than plakins. Here, we investigated RNAs and proteins expressed from the BPAG1 locus and suggest novel alternative splicing variants, which include one consisting of the COOH-terminal domain structure homologous to MACF. The results indicate that BPAG1 has three kinds of cytoskeletal binding domains and seems to play an important role in linking the different types of cytoskeletons.  相似文献   

13.
The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution.  相似文献   

14.
15.
16.
A gene trap approach to identify genes that control development   总被引:3,自引:0,他引:3  
One methodology called gene trap represents a versatile strategy by which murine genes that control developmental events can be captured and identified with corresponding mutants produced at the same time. Gene trap methodology has been developed and several genes and their mutants have been analyzed, but almost all of the genes reported are those already known or murine homologs of other species. In this study, the efficiency of the gene trap methodology was improved and a novel mutant mouse strain named jumonji established which displayed an intriguing defect. Homozygous fetal mice died in utero and a significant proportion of the homozygotes showed abnormal groove formation on the neural plate and a defect in neural tube closure with a mixed genetic background of 129/Ola and BALB/c. The trapped gene believed to be responsible for these phenotypes encodes a novel nuclear protein. The results reveal that the gene trap approach can identify unknown interesting genes in murine development. The gene trap strategy, however, has several problems, the greatest of which is the difficulty in prescreening embryonic stem (ES) cells for interesting trapped genes. Recent studies are solving this problem and show that the prescreening of ES cells for genes with several characteristics is possible.  相似文献   

17.
Murine CDP/Cux, a homologue of the Drosophila Cut homeoprotein, modulates the promoter activity of cell cycle-related and cell-type-specific genes. CDP/Cux interacts with histone gene promoters as the DNA binding subunit of a large nuclear complex (HiNF-D). CDP/Cux is a ubiquitous protein containing four conserved DNA binding domains: three Cut repeats and a homeodomain. In this study, we analyzed genetically targeted mice (Cutl1(tm2Ejn), referred to as Delta C) that express a mutant CDP/Cux protein with a deletion of the C terminus, including the homeodomain. In comparison to the wild-type protein, indirect immunofluorescence showed that the mutant protein exhibited significantly reduced nuclear localization. Consistent with these data, DNA binding activity of HiNF-D was lost in nuclear extracts derived from mouse embryonic fibroblasts (MEFs) or adult tissues of homozygous mutant (Delta C(-/-)) mice, indicating the functional loss of CDP/Cux protein in the nucleus. No significant difference in growth characteristics or total histone H4 mRNA levels was observed between wild-type and Delta C(-/-) MEFs in culture. However, specific histone genes (H4.1 and H1) containing CDP/Cux binding sites have reduced expression levels in homozygous mutant MEFs. Stringent control of growth and differentiation appears to be compromised in vivo. Homozygous mutant mice have stunted growth (20 to 50% weight reduction), a high postnatal death rate of 60 to 70%, sparse abnormal coat hair, and severely reduced fertility. The deregulated hair cycle and severely diminished fertility in Cutl1(tm2Ejn/tm2Ejn) mice suggest that CDP/Cux is required for the developmental control of dermal and reproductive functions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号