首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Similarity of genetic and phenotypic variation patterns among populations is important for making quantitative inferences about past evolutionary forces acting to differentiate populations and for evaluating the evolution of relationships among traits in response to new functional and developmental relationships. Here, phenotypic co variance and correlation structure is compared among Platyrrhine Neotropical primates. Comparisons range from among species within a genus to the superfamily level. Matrix correlation followed by Mantel's test and vector correlation among responses to random natural selection vectors (random skewers) were used to compare correlation and variance/covariance matrices of 39 skull traits. Sampling errors involved in matrix estimates were taken into account in comparisons using matrix repeatability to set upper limits for each pairwise comparison. Results indicate that covariance structure is not strictly constant but that the amount of variance pattern divergence observed among taxa is generally low and not associated with taxonomic distance. Specific instances of divergence are identified. There is no correlation between the amount of divergence in covariance patterns among the 16 genera and their phylogenetic distance derived from a conjoint analysis of four already published nuclear gene datasets. In contrast, there is a significant correlation between phylogenetic distance and morphological distance (Mahalanobis distance among genus centroids). This result indicates that while the phenotypic means were evolving during the last 30 millions years of New World monkey evolution, phenotypic covariance structures of Neotropical primate skulls have remained relatively consistent. Neotropical primates can be divided into four major groups based on their feeding habits (fruit-leaves, seed-fruits, insect-fruits, and gum-insect-fruits). Differences in phenotypic covariance structure are correlated with differences in feeding habits, indicating that to some extent changes in interrelationships among skull traits are associated with changes in feeding habits. Finally, common patterns and levels of morphological integration are found among Platyrrhine primates, suggesting that functional/developmental integration could be one major factor keeping covariance structure relatively stable during evolutionary diversification of South American monkeys.  相似文献   

2.
Morphological divergence among species may be constrained by the pattern of genetic variances and covariances among traits within species. Assessing the existence of such a relationship in nature requires information on the stability of intraspecific correlation and covariance structure and the correspondence of this structure to the pattern of evolutionary divergence within a lineage. Here, we investigate these issues for nine morphological traits and 15 species of stalk-eyed flies in the genus Diasemopsis. Within-species matrices for these traits were generated from phenotypic data for all the Diasemopsis species and from genetic data for a single Diasemopsis species, D. dubia. The among-species pattern of divergence was assessed by calculating the evolutionary correlations for all pairwise combinations of the morphological traits along the phylogeny of these species. Comparisons of intraspecific matrices reveal significant similarity among all species in the phenotypic correlations matrices but not the covariance matrices. In addition, the differences in correlation structure that do exist among species are not related to their phylogenetic placement or change in the means of the traits. Comparisons of the phenotypic and phylogenetic matrices suggest a strong relationship between the pattern of evolutionary change among species and both the intraspecific correlation structure and the stability of this structure among species. The phenotypic and the phylogenetic matrices are significantly similar, and pairs of traits whose intraspecific correlations are more stable across taxa exhibit stronger coevolution on the phylogeny. These results suggest either the existence of strong constraints on the pattern of evolutionary change or a consistent pattern of correlated selection shaping both the phenotypic and phylogenetic matrices. The genetic correlation structure for D. dubia, however, does not correspond with patterns found in the phenotypic and phylogenetic data. Possible reasons for this disagreement are discussed.  相似文献   

3.
In quantitative genetics, the genetic architecture of traits, described in terms of variances and covariances, plays a major role in determining the trajectory of evolutionary change. Hence, the genetic variance-covariance matrix (G-matrix) is a critical component of modern quantitative genetics theory. Considerable debate has surrounded the issue of G-matrix constancy because unstable G-matrices provide major difficulties for evolutionary inference. Empirical studies and analytical theory have not resolved the debate. Here we present the results of stochastic models of G-matrix evolution in a population responding to an adaptive landscape with an optimum that moves at a constant rate. This study builds on the previous results of stochastic simulations of G-matrix stability under stabilizing selection arising from a stationary optimum. The addition of a moving optimum leads to several important new insights. First, evolution along genetic lines of least resistance increases stability of the orientation of the G-matrix relative to stabilizing selection alone. Evolution across genetic lines of least resistance decreases G-matrix stability. Second, evolution in response to a continuously changing optimum can produce persistent maladaptation for a correlated trait, even if its optimum does not change. Third, the retrospective analysis of selection performs very well when the mean G-matrix (G) is known with certainty, indicating that covariance between G and the directional selection gradient beta is usually small enough in magnitude that it introduces only a small bias in estimates of the net selection gradient. Our results also show, however, that the contemporary G-matrix only serves as a rough guide to G. The most promising approach for the estimation of G is probably through comparative phylogenetic analysis. Overall, our results show that directional selection actually can increase stability of the G-matrix and that retrospective analysis of selection is inherently feasible. One major remaining challenge is to gain a sufficient understanding of the G-matrix to allow the confident estimation of G.  相似文献   

4.
Sixty male crania from three Platyrrhini and three Catarrhini genera were measured by means of the craniofunctional method. The aim was to analyze functional components of the skull and relate their function and the degree of encephalization to life history variables. We recognized two major and eight minor functional components. The objectives were to test (1) if within-taxa (Platyrrhini or Catarrhini) and/or between-taxa (Platyrrhini and Catarrhini) comparisons showed minor-component differentiation; and (2) if encephalization affects both primate groups differently. After standardization by size and scaling, 15 possible within-taxa and between-taxa comparisons were made. We found a strong phylogenetic signal, i.e., cranial differences were not randomly distributed, with the between-taxa variation being greater than within-taxa. Both hypotheses tested were accepted since: (1) There was no random variation between functional cranial components. They followed definite patterns for ancestral and derived traits. (2) Encephalization was present in all scaled comparisons, with Platyrrhini showing a higher degree of encephalization than Catarrhini. We conclude that major and minor craniofunctional components should be considered as correlated traits related to life history, because we found different patterns between platyrrhines and catarrhines, and within species of both taxa.  相似文献   

5.
6.
The adaptive landscape and the G-matrix are keys concepts for understanding how quantitative characters evolve during adaptive radiation. In particular, whether the adaptive landscape can drive convergence of phenotypic integration (i.e., the pattern of phenotypic variation and covariation summarized in the P-matrix) is not well studied. We estimated and compared P for 19 morphological traits in eight species of Caribbean Anolis lizards, finding that similarity in P among species was not correlated with phylogenetic distance. However, greater similarity in P among ecologically similar Anolis species (i.e., the trunk-ground ecomorph) suggests the role of convergent natural selection. Despite this convergence and relatively deep phylogenetic divergence, a large portion of eigenstructure of P is retained among our eight focal species. We also analyzed P as an approximation of G to test for correspondence with the pattern of phenotypic divergence in 21 Caribbean Anolis species. These patterns of covariation were coincident, suggesting that either genetic constraint has influenced the pattern of among-species divergence or, alternatively, that the adaptive landscape has influenced both G and the pattern of phenotypic divergence among species. We provide evidence for convergent evolution of phenotypic integration for one class of Anolis ecomorph, revealing yet another important dimension of evolutionary convergence in this group.  相似文献   

7.
Quantitative genetic studies that model complex, multivariate phenotypes are important for both evolutionary prediction and artificial selection. For example, changes in gene expression can provide insight into developmental and physiological mechanisms that link genotype and phenotype. However, classical analytical techniques are poorly suited to quantitative genetic studies of gene expression where the number of traits assayed per individual can reach many thousand. Here, we derive a Bayesian genetic sparse factor model for estimating the genetic covariance matrix (G-matrix) of high-dimensional traits, such as gene expression, in a mixed-effects model. The key idea of our model is that we need consider only G-matrices that are biologically plausible. An organism’s entire phenotype is the result of processes that are modular and have limited complexity. This implies that the G-matrix will be highly structured. In particular, we assume that a limited number of intermediate traits (or factors, e.g., variations in development or physiology) control the variation in the high-dimensional phenotype, and that each of these intermediate traits is sparse – affecting only a few observed traits. The advantages of this approach are twofold. First, sparse factors are interpretable and provide biological insight into mechanisms underlying the genetic architecture. Second, enforcing sparsity helps prevent sampling errors from swamping out the true signal in high-dimensional data. We demonstrate the advantages of our model on simulated data and in an analysis of a published Drosophila melanogaster gene expression data set.  相似文献   

8.
Interactions among traits that build a complex structure may be represented as genetic covariation and correlation. Genetic correlations may act as constraints, deflecting the evolutionary response from the direction of natural selection. We investigated the relative importance of drift, selection, and constraints in driving skull divergence in a group of related toad species. The distributional range of these species encompasses very distinct habitats with important climatic differences and the species are primarily distinguished by differences in their skulls. Some parts of the toad skull, such as the snout, may have functional relevance in reproductive ecology, detecting water cues. Thus, we hypothesized that the species skull divergence was driven by natural selection associated with climatic variation. However, given that all species present high correlations among skull traits, our second prediction was of high constraints deflecting the response to selection. We first extracted the main morphological direction that is expected to be subjected to selection by using within- and between-species covariance matrices. We then used evolutionary regressions to investigate whether divergence along this direction is explained by climatic variation between species. We also used quantitative genetics models to test for a role of random drift versus natural selection in skull divergence and to reconstruct selection gradients along species phylogeny. Climatic variables explained high proportions of between-species variation in the most selected axis. However, most evolutionary responses were not in the direction of selection, but aligned with the direction of allometric size, the dimension of highest phenotypic variance in the ancestral population. We conclude that toad species have responded to selection related to climate in their skulls, yet high evolutionary constraints dominated species divergence and may limit species responses to future climate change.  相似文献   

9.
Aim  We used inferences of phylogenetic relationships and divergence times for three lineages of highland pitvipers to identify broad-scale historical events that have shaped the evolutionary history of Middle American highland taxa, and to test previous hypotheses of Neotropical speciation.
Location  Middle America (Central America and Mexico).
Methods  We used 2306 base pairs of mitochondrial gene sequences from 178 individuals to estimate the phylogeny and divergence times of New World pitviper lineages, focusing on three genera ( Atropoides , Bothriechis and Cerrophidion ) that are broadly co-distributed across Middle American highlands.
Results  We found strong correspondence across three highland lineages for temporally and geographically coincident divergences in the Miocene and Pliocene, and further identified widespread within-species divergences across multiple lineages that occurred in the early–middle Pleistocene.
Main conclusions  Available data suggest that there were at least three major historical events in Middle America that had broad impacts on species divergence and lineage diversification among highland taxa. In addition, we find widespread within-species genetic structure that may be attributable to the climatic changes that affected gene flow among highland taxa during the middle–late Pleistocene.  相似文献   

10.
Photosynthetic pathway is used widely to discriminate plant functional types in studies of global change. However, independent evolutionary lineages of C4 grasses with different variants of C4 photosynthesis show different biogeographical relationships with mean annual precipitation, suggesting phylogenetic niche conservatism (PNC). To investigate how phylogeny and photosynthetic type differentiate C4 grasses, we compiled a dataset of morphological and habitat information of 185 genera belonging to two monophyletic subfamilies, Chloridoideae and Panicoideae, which together account for 90 % of the world’s C4 grass species. We evaluated evolutionary variance and covariance of morphological and habitat traits. Strong phylogenetic signals were found in both morphological and habitat traits, arising mainly from the divergence of the two subfamilies. Genera in Chloridoideae had significantly smaller culm heights, leaf widths, 1,000-seed weights and stomata; they also appeared more in dry, open or saline habitats than those of Panicoideae. Controlling for phylogenetic structure showed significant covariation among morphological traits, supporting the hypothesis of phylogenetically independent scaling effects. However, associations between morphological and habitat traits showed limited phylogenetic covariance. Subfamily was a better explanation than photosynthetic type for the variance in most morphological traits. Morphology, habitat water availability, shading, and productivity are therefore all involved in the PNC of C4 grass lineages. This study emphasized the importance of phylogenetic history in the ecology and biogeography of C4 grasses, suggesting that divergent lineages need to be considered to fully understand the impacts of global change on plant distributions.  相似文献   

11.
The G-matrix summarizes the inheritance of multiple, phenotypic traits. The stability and evolution of this matrix are important issues because they affect our ability to predict how the phenotypic traits evolve by selection and drift. Despite the centrality of these issues, comparative, experimental, and analytical approaches to understanding the stability and evolution of the G-matrix have met with limited success. Nevertheless, empirical studies often find that certain structural features of the matrix are remarkably constant, suggesting that persistent selection regimes or other factors promote stability. On the theoretical side, no one has been able to derive equations that would relate stability of the G-matrix to selection regimes, population size, migration, or to the details of genetic architecture. Recent simulation studies of evolving G-matrices offer solutions to some of these problems, as well as a deeper, synthetic understanding of both the G-matrix and adaptive radiations.  相似文献   

12.
Phylogenetic relationships among 40 New World and Old World members of Apiaceae subfamily Apioideae, representing seven of the eight tribes and eight of the ten subtribes commonly recognized in the subfamily, were inferred from nucleotide sequence variation in the internal transcribed spacer (ITS) regions of 18-26S nuclear ribosomal DNA. Although the sequences are alignable, with only 11% of sites excluded from the analyses because of alignment ambiguity, divergence values in pairwise comparisons of unambiguous positions among all taxa were high and ranged from 0.5 to 33.2% of nucleotides in ITS 1 and from 0 to 33.2% of nucleotides in ITS 2. Average sequence divergence across both spacer regions was 18.4% of nucleotides. Phylogenies derived from ITS sequences estimated using neighbor-joining analysis of substitution rates, and maximum likelihood and parsimony methods give trees of essentially similar topology and indicate that: (1) there is little support for any existing system of classification of the subfamily that is based largely on morphological and anatomical features of the mericarp; (2) there is a major phylogenetic division within the subfamily, with one clade comprising the genus Smyrnium and those taxa belonging to Drude's tribes Dauceae, Scandiceae, and Laserpitieae and the other clade comprising all other examined taxa; and (3) the genera Arracacia, Coaxana, Coulterophytum, Enantiophylla, Myrrhidendron, Prionosciadium, and Rhodosciadium, all endemic to Mexico and Central America, comprise a clade but their relationships to other New World taxa are equivocal. A phylogeny derived from parsimony analysis of chloroplast DNA rpoC1 intron sequences is consistent with, but considerably less resolved than, relationships derived from these ITS regions. This study affirms that ITS sequences are useful for phylogenetic inference among closely related members of Apioideae but, owing to high rates of nucleotide substitution, are less useful in resolving relationships among the more ancestral nodes of the phylogeny.  相似文献   

13.
The langurs of the genus Presbytis inhabit tropical rainforests of Sundaland, and with more than 50 color variants grouped in up to eleven species, Presbytis is one of the most diverse Old World monkey genera. The number of taxa and their phylogenetic relationships however remain controversial. To address these issues, we analyzed a 1.8 kb long fragment of the mitochondrial genome, including the cytochrome b gene, the hypervariable region I of the D-loop and the intermediate tRNAs, from individuals representing nine species. Based on our data, we obtained various well-supported terminal clades, which refer mainly to described taxa. Relationships among these clades are not fully resolved, suggesting at least two radiations in the evolutionary history of the genus. According to divergence age estimates, radiations occurred in the late Miocene and the early to middle Pleistocene. Our findings support the revision of the current classification of the genus Presbytis and enable us to discuss implications for conservation. However, further studies including nuclear sequence data are necessary to completely understand the evolutionary history of the genus, and to address possible hybridization events among taxa.  相似文献   

14.
New World monkeys (NWM) display substantial variation (two orders of magnitude) in body size. Despite this, variation in skull size and associated shape show a conserved allometric relationship, both within and between genera. Maximum likelihood estimates of quantitative ancestral states were used to compare the direction of morphological differentiation with the phenotypic (p(max)) and genetic (g(max)) lines of least evolutionary resistance (LLER). Diversification in NWM skulls occurred principally along the LLER defined by size variation. We also obtained measures of morphological amount and pace of change using our skull data together with published genetic distances to test whether the LLER influenced the amount and pace of diversification. Moreover, data on an ecological factor (diet) was obtained from the literature and used to test the association of this niche-related measure with the morphological diversification. Two strategies were used to test the association of LLER with the morphological and dietary amount and pace of change, one focusing on both contemporary genera and maximum likelihood reconstructed ancestors and the other using only the 16 contemporary genera in a phylogenetic comparative analysis. Our results suggest that the LLER influenced the path, amount, and pace of morphological change. Evolution also occurred away from the LLER in some taxa but this occurred at a slower pace and resulted in a relatively low amount of morphological change. We found that longer branch lengths (time) are associated with larger differences in p(max) orientation. However, on a macroevolutionary scale there is no such trend. Diet is consistently associated with both absolute size differences and morphological integration patterns, and we suggest that this ecological factor might be driving adaptive radiation in NWM. Invasion of diet-based adaptive zones involves changes in absolute size, due to metabolic and foraging constraints, resulting in simple allometric skull diversification along the LLER. While it is clear that evolutionary change occurred along the LLER, it is not clear whether this macroevolutionary pattern results from a conservation of within-population genetic covariance patterns or long-term adaptation along a size dimension or whether both constraints and selection were inextricably involved.  相似文献   

15.
A problem in deciphering primate phylogeny, morphological convergence between different evolutionary lines, can be overcome by species comparisons of proteins, macromolecules with specificities closely linked to the genetic code in DNA. Various chemical, electrophoretic, and immunological data on serum and tissue proteins in primates are reviewed with respect to their phylogenetic significance. Much of this data deals with protein specificities in the Hominoidea and depicts a particularly close genetic relationship between man and the African apes. Hominoidea, Cercopithecoidea, Ceboidea, and Lorisoidea are characterized by their proteins as monophyletic or natural taxa, even though the conventional subdivisions within several of these superfamilies are not in complete accord with the protein analyses. The protein evidence supports the conventional grouping of Cercopithecoidea with Hominoidea in the infraorder Catarrhini and the grouping of Catarrhini and Platyrrhini (Ceboidea) in the suborder Anthropoidea. Lemuroidea and Lorisoidea appear to be closer to one another than to either Tupaioidea or Anthropoidea and closer to the Anthropoidea than to the Tupaioidea. Comparisons of primate DNA's by Hoyer and coworkers are demonstrating genetic affinities among primates which agree with those deduced from the comparison of protein specificities. Species differences and similarities in the relative amounts of different protein macromolecules reflect the grade relationships of primates, but, unlike the comparisons of amino-acid sequences or antigenic specificities, are not reliable indicators of phyletic affinities. Data on the ratios of M(uscle) to H(eart) type lactate dehydrogenase in a series of primate brains provides a biochemical example of the concept that there are “lower” (primitive) and “higher” (advanced) grades of evolutionary development among the extant primates.  相似文献   

16.
Sexual dimorphism is a consequence of both sex‐specific selection and potential constraints imposed by a shared genetic architecture underlying sexually homologous traits. However, genetic architecture is expected to evolve to mitigate these constraints, allowing the sexes to approach their respective optimal mean phenotype. In addition, sex‐specific selection is expected to generate sexual dimorphism of trait covariance structure (e.g., the phenotypic covariance matrix, P ), but previous empirical work has not fully addressed this prediction. We compared patterns of phenotypic divergence, for three traits in seven taxa in the insect genus Phymata (Reduviidae), to ask whether sexual dimorphism in P is common and whether its magnitude relates to the extent of sexual dimorphism in trait means. We found that sexual dimorphism in both mean and covariance structure was pervasive but also that the multivariate distance between sex‐specific means was correlated with sex differences in the leading eigenvector of P , while accounting for uncertainty in phylogenetic relationships. Collectively, our findings suggest that sexual dimorphism in covariance structure may be a common but underappreciated feature of dioecious populations.  相似文献   

17.
Abstract Patterns of genetic variation and covariation strongly affect the rate and direction of evolutionary change by limiting the amount and form of genetic variation available to natural selection. We studied evolution of morphological variance-covariance structure among seven populations of house finches (Carpodacus mexicanus) with a known phylogenetic history. We examined the relationship between within- and among-population covariance structure and, in particular, tested the concordance between hierarchical changes in morphological variance-covariance structure and phylogenetic history of this species. We found that among-population morphological divergence in either males or females did not follow the within-population covariance patterns. Hierarchical patterns of similarity in morphological covariance matrices were not congruent with a priori defined historical pattern of population divergence. Both of these results point to the lack of proportionality in morphological covariance structure of finch populations, suggesting that random drift alone is unlikely to account for observed divergence. Furthermore, drift alone cannot explain the sex differences in within- and among-population covariance patterns or sex-specific patterns of evolution of covariance structure. Our results suggest that extensive among-population variation in sexual dimorphism in morphological covariance structure was produced by population differences in local selection pressures acting on each sex.  相似文献   

18.
Although theoretical studies have suggested that base-compositional heterogeneity can adversely affect phylogenetic reconstruction, only a few empirical examples of this phenomenon, mostly among ancient lineages (with divergence dates > 100 Mya), have been reported. In the course of our phylogenetic research on the New World marsupial family Didelphidae, we sequenced 2790 bp of the RAG1 exon from exemplar species of most extant genera. Phylogenetic analysis of these sequences recovered an anomalous node consisting of two clades previously shown to be distantly related based on analyses of other molecular data. These two clades show significantly increased GC content at RAG1 third codon positions, and the resulting convergence in base composition is strong enough to overwhelm phylogenetic signal from other genes (and morphology) in most analyses of concatenated datasets. This base-compositional convergence occurred relatively recently (over tens rather than hundreds of millions of years), and the affected gene region is still in a state of evolutionary disequilibrium. Both mutation rate and substitution rate are higher in GC-rich didelphid taxa, observations consistent with RAG1 sequences having experienced a higher rate of recombination in the convergent lineages.  相似文献   

19.
Although in most recent broad-scale analyses, diversity is measured by counting the number of species in a given area or spatial unity (species richness), a 'top-down' approach has been used sometimes, counting higher-taxon (genera, family) instead of species with some advantages. However, this higher-taxon approach is quite empirical and the cut-off level is usually arbitrarily defined. In this work, we show that the higher-taxon approach could be theoretically linked with models of phenotypic diversification by means of phylogenetic autocorrelation analysis in such a way that the taxonomic (or phylogenetic) rank to be used could not be necessarily arbitrary. This rank expresses past time in which taxa became independent for a given phenotypic trait or for the evolution of average phenotypes across different traits. We illustrated the approach by evaluating phylogenetic patches for 23 morphological, ecological and behavioural characters in New World terrestrial Carnivora. The higher-taxon counts at 18.8 mya (S(L)) defined by phylogenetic correlograms are highly correlated with species richness (r = 0.899; P < 0.001 with ca. 13 degrees of freedom by taking spatial autocorrelation into account). However, S(L) in North America is usually larger than in South America. Thus, although there are more species in South and Central America, the fast recent diversification that occurred in this region generated species that are "redundant" in relation to lineages that were present at 18.8 my. BP. Therefore, the number of lineages can be comparatively used as a measure of evolutionary diversity under a given model of phenotypic divergence among lower taxonomic units.  相似文献   

20.
Fabre, P.‐H., Galewski, T., Tilak, M.‐k. & Douzery, E.J.P. (2012) Diversification of South American spiny rats (Echimyidae): a multigene phylogenetic approach. —Zoologica Scripta, 00, 000–000. We investigated the phylogenetic relationships of 14 Echimyidae (spiny rats), one Myocastoridae (nutrias) and one Capromyidae (hutias) genera based on three newly sequenced nuclear genes (APOB, GHR and RBP3) and five previously published markers (the nuclear RAG1 and vWF, and the mitochondrial cytochrome b, 12S rRNA and 16S rRNA). We recovered a well‐supported phylogeny within the Echimyidae, although the evolutionary relationships among arboreal echimyid taxa remain unresolved. Molecular divergence times estimated using a Bayesian relaxed molecular clock suggest a Middle Miocene origin for most of the extant echimyid genera. Echimyidae seems to constitute an example of evolutionary radiation with high species diversity, yet they exhibit only narrow skull morphological changes, and the arboreal and terrestrial taxa are shown to retain numerous plesiomorphic features. The most recent common ancestor of spiny rats is inferred to be a ground‐dwelling taxon that has subsequently diverged into fossorial, semiaquatic and arboreal habitats. The arboreal clade polytomy and ancestral character estimations suggest that the colonization of the arboreal niche constituted the keystone event of the echimyid radiation. However, biogeographical patterns suggest a strong influence of allopatric speciation in addition to ecology‐driven diversification among South American spiny rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号