共查询到20条相似文献,搜索用时 15 毫秒
1.
Differentiation of 3T3-L1 cells into adipocytes presupposes the expression of the glucose transporter isoform GLUT4 and the acquisition of insulin-dependent GLUT4 translocation from intracellular storage vesicles to plasma membrane. This ability to translocate GLUT4 depends on the presence of a set of proteins of the SNARE category that are essential in the fusion step. The expression and levels of some of these SNARE proteins are altered during 3T3-L1 differentiation. Levels of the v-SNARE protein cellubrevin and of the t-SNARE protein syntaxin 4 were increased in this process in parallel to GLUT4. However, the levels of SNAP-23, another t-SNARE, were maintained during differentiation. Immunofluorescence images of SNAP-23 showed the initial distribution of this protein in a perinuclear region before differentiation and its redistribution towards plasma membrane in the adipocyte form. These results suggest a capital role in the expression levels and cellular distribution, during 3T3-L1 differentiation, of SNARE proteins involved in the late steps of GLUT4 translocation. 相似文献
2.
Arachidonic acid (AA) at 0.2 mM enhances glucose uptake through increased levels of glucose transporter (GLUT) 1 protein in 3T3-L1 adipocytes. Since AA is a precursor of prostaglandins (PGs), we investigated the effect of PGs on glucose consumption in 3T3-L1 cells. Among several PGs, only prostaglandin F(2)alpha (PGF(2)alpha) enhanced glucose consumption in 3T3-L1 cells treated with dexamethasone (DEX), 3-isobutyl-1-methyl-xanthine (IBMX), and insulin. To study the mechanism of PGF(2)alpha-enhanced glucose consumption, we investigated the effect of PGF(2)alpha on glycerol-3-phosphate dehydrogenase (GPDH) activity, triglycerides (TGs) content, and the expression of GLUT1 protein. PGF(2)alpha suppressed GPDH activity and did not increase the expression of GLUT1 protein in 3T3-L1 cells treated with DEX, IBMX, and insulin. These results suggest that AA-stimulated glucose uptake is not through the effect of PGF(2)alpha. Our results indicate that PGF(2)alpha is a unique regulator of adipocyte differentiation (suppression) and glucose consumption (enhancement) in 3T3-L1 cells. 相似文献
3.
4.
5.
6.
7.
8.
Insulin-stimulated translocation of the HepG2/erythrocyte-type glucose transporter expressed in 3T3-L1 adipocytes 总被引:11,自引:0,他引:11
G W Gould V Derechin D E James K Tordjman S Ahern E M Gibbs G E Lienhard M Mueckler 《The Journal of biological chemistry》1989,264(4):2180-2184
Insulin stimulates glucose transport into adipocytes, at least in part, via the translocation of intracellular transporters to the plasma membrane. The human HepG2-type transporter, which is not insulin-responsive in its native cell type, was expressed in 3T3-L1 adipocytes by infection with recombinant retrovirus harboring the HepG2 transporter cDNA in order to determine whether glucose transporter translocation in adipocytes is restricted to a distinct insulin-sensitive transporter species. The distributions of the endogenous murine and the HepG2 transporters were estimated by quantitative immunoblot analysis of subcellular fractions probed with either a monoclonal antibody that recognized only the human transporter or a polyclonal antibody that recognized both transporter species. In the basal state, the intracellular membrane fraction comprised approximately 50% of the total of each transporter type. Insulin decreased the content of both transporter species in the intracellular membranes by approximately 50% and increased the plasma membrane content of both species by approximately 1.5-2-fold. The similar insulin-mediated increase in the plasma membrane content of endogenous murine and HepG2 glucose transporters was verified by labeling of cell surface glycoproteins with [3H]NaBH4 followed by immunoprecipitation with glucose transporter antibodies. These data indicate that insulin-mediated translocation in 3T3-L1 adipocytes is not restricted to a tissue-specific insulin-responsive glucose transporter species and suggest that other tissue-specific factors regulate the translocation process. 相似文献
9.
10.
11.
Endothelin-1 increases glucose transporter glut1 mRNA accumulation in 3T3-L1 adipocytes by a mitogen-activated protein kinase-dependent pathway 总被引:2,自引:0,他引:2
The mechanism of enhancing glucose transport by prolonged endothelin-1 (ET-1) treatment of 3T3-L1 adipocytes was examined. Western and Northern blot analyses indicated that ET-1 increased the amount of both GLUT1 protein and mRNA. The degradation rate of GLUT1 mRNA as measured in the presence of actinomycin D, nevertheless, was not significantly altered by ET-1. Whereas various inhibitors for distinct signalling pathways were tested, only the mitogen-activated protein kinase (MAPK) kinase inhibitor, PD98059, was found to decrease significantly the enhancing effect of ET-1. Similar extent of inhibition was observed in cells pretreated with pertussis toxin (PT). Immunoblot analysis revealed that ET-1 may stimulate a transient phosphorylation of p42/p44 MAPK and both PT and PD98059 inhibited this stimulation. In addition, the effect of ET-1 on GLUT1 mRNA accumulation was inhibited by PD98059 and cycloheximide, implying that a trans-activation was involved. Taken together, these results suggest that ET-1 may induce GLUT1 gene expression by a MAPK-dependent mechanism. 相似文献
12.
Jang MK Kim CH Seong JK Jung MH 《Biochemical and biophysical research communications》2012,418(1):38-43
The global spread of highly pathogenic avian influenza A H5N1 viruses raises concerns about more widespread infection in the human population. Pre-pandemic vaccine for H5N1 clade 1 influenza viruses has been produced from the A/Viet Nam/1194/2004 strain (VN1194), but recent prevalent avian H5N1 viruses have been categorized into the clade 2 strains, which are antigenically distinct from the pre-pandemic vaccine. To understand the antigenicity of H5N1 hemagglutinin (HA), we produced a neutralizing monoclonal antibody (mAb12-1G6) using the pre-pandemic vaccine. Analysis with chimeric and point mutant HAs revealed that mAb12-1G6 bound to the loop (amino acid positions 140-145) corresponding to an antigenic site A in the H3 HA. mAb12-1G6 failed to bind to the mutant VN1194 HA when only 3 residues were substituted with the corresponding residues of the clade 2.1.3.2 A/Indonesia/5/05 strain (amino acid substitutions at positions Q142L, K144S, and S145P), suggesting that these amino acids are critical for binding of mAb12-1G6. Escape mutants of VN1194 selected with mAb12-1G6 carried a S145P mutation. Interestingly, mAb12-1G6 cross-neutralized clade 1 and clade 2.2.1 but not clade 2.1.3.2 or clade 2.3.4 of the H5N1 virus. We discuss the cross-reactivity, based on the amino acid sequence of the epitope. 相似文献
13.
14.
Min Kang Li-Mei Yan Wen-Yu Zhang Yu-Mei Li An-Zhou Tang He-Sheng Ou 《Molecular biology reports》2013,40(8):5027-5034
MicroRNAs are endogenous small RNAs with a high degree of conservation, participating in a variety of vital activities. In present study, to explore the effect of microRNAs on 3T3-L1 adipocyte differentiation and adiponectin expression, the adipo-related microRNAs were screened and identified by micorRNA microarray. The highly expression plasmid of microRNA-21 with obvious expression up-regulation (miR-21) and its anti-sense (miR-21 inhibitor) were constructed and transfected into 3T3-L1 preadipocytes. The effect of miR-21 on 3T3-L1 adipocyte differentiation was observed, and the protein and mRNA expression level of adiponectin and AP-1 were analyzed. Results showed that, the expression profiles of microRNAs significantly changed during 3T3-L1 adipocyte differentiation. The expression of miR-21 was obviously up-regulated. miR-21 could significantly promote adipocyte differentiation, increase adiponectin mRNA and protein expression, while decrease AP-1 protein level. Meanwhil, miR-21 inhibitor blocked the effects of miR-21 mentioned above. The overexpression of AP-1 could absolutely reverse the stimulatory effect of miR-21 on adiponectin. miR-21 plays an important role in regulating adipocyte differentiation and adiponectin expression by inhibiting AP-1 expression. 相似文献
15.
Transcriptional repression of pref-1 by glucocorticoids promotes 3T3-L1 adipocyte differentiation 总被引:10,自引:0,他引:10
Smas CM Chen L Zhao L Latasa MJ Sul HS 《The Journal of biological chemistry》1999,274(18):12632-12641
16.
The 3T3-L1 cell line is a well-established and commonly used in vitro model to assess adipocyte differentiation. Over the course of several days confluent 3T3-L1 cells can be converted to adipocytes in the presence of an adipogenic cocktail. Changes in gene expression were measured by DNA microarrays at three time points (24 h, 4 days, and 1 week) during the course of differentiation from preadipocytes to mature adipocytes. Several functional categories of genes were affected by adipocyte conversion. In addition, seven genes were found to be commonly altered by 5-fold or more by adipocyte conversion at all three time points. Lipocalin 2, haptoglobin, serum amyloid A3, stearoyl-CoA desaturase, and 11beta-hydroxysteroid dehydrogenase 1 were induced while actin alpha2 and procollagen VIII alpha1 were suppressed by adipocyte differentiation. Further study of the regulation of these genes and pathways will lead to an increased understanding of the biochemical pathways involved in adipocyte differentiation and possibly to the identification of new therapeutic targets for treatment of obesity and other metabolic diseases. 相似文献
17.
18.
Regulation of apelin mRNA expression by insulin and glucocorticoids in mouse 3T3-L1 adipocytes 总被引:12,自引:0,他引:12
The novel 36-amino acid peptide, apelin, is the endogenous ligand for the orphan receptor APJ. Apelin may play important roles in the regulation of the cardiovascular system and the hypothalamic-pituitary axis. It is a potent hypotensive agent and one of the most potent stimulators of cardiac contractility. In this study, we investigated the roles of apelin derived from adipocytes in the regulation of cardiovascular homeostasis. We found that both apelin and APJ mRNAs were expressed in isolated mouse adipocytes and that apelin mRNA levels increased during the differentiation of 3T3-L1 cells to adipocytes. We also found that the administration of insulin (1 nM-100 nM) increased, while that of dexamethasone (0.1 nM-100 nM) decreased the apelin mRNA levels in 3T3-L1 adipocytes in a dose-dependent manner, suggesting that insulin and glucocorticoids regulate apelin gene expression in adipocytes. We speculate that high glucocorticoid levels suppress apelin production and stimulate angiotensin II production in adipocyte, decreasing the counter-regulatory activity of apelin against the pressor action of angiotensin II, which might partly be involved in the mechanism underlying the development of obesity-related hypertension. 相似文献
19.
Cinnamon improves glucose and lipid profiles of people with type 2 diabetes. Water-soluble cinnamon extract (CE) and HPLC-purified cinnamon polyphenols (CP) with doubly linked procyanidin type-A polymers display insulin-like activity. The objective of this study was to investigate the effects of cinnamon on the protein and mRNA levels of insulin receptor (IR), glucose transporter 4 (GLUT4), and tristetraprolin (TTP/ZFP36) in mouse 3T3-L1 adipocytes. Immunoblotting showed that CP increased IRbeta levels and that both CE and CP increased GLUT4 and TTP levels in the adipocytes. Quantitative real-time PCR indicated that CE (100mug/ml) rapidly increased TTP mRNA levels by approximately 6-fold in the adipocytes. CE at higher concentrations decreased IRbeta protein and IR mRNA levels, and its effect on GLUT4 mRNA levels exhibited a biphasic pattern in the adipocytes. These results suggest that cinnamon exhibits the potential to increase the amount of proteins involved in insulin signaling, glucose transport, and anti-inflammatory/anti-angiogenesis response. 相似文献
20.
Newton BW Cologna SM Moya C Russell DH Russell WK Jayaraman A 《Journal of proteome research》2011,10(10):4692-4702
The increase in adipose tissue mass arises in part from progressive lipid loading and triglyceride accumulation in adipocytes. Enlarged adipocytes produce the highest levels of pro-inflammatory molecules and reactive oxygen species (ROS). Since mitochondria are the site for major metabolic processes (e.g., TCA cycle) that govern the extent of triglyceride accumulation as well as the primary site of ROS generation, we quantitatively investigated changes in the adipocyte mitochondrial proteome during different stages of differentiation and enlargement. Mitochondrial proteins from 3T3-L1 adipocytes at different stages of lipid accumulation (days 0-18) were digested and labeled using the iTRAQ 8-plex kit. The labeled peptides were fractionated using a liquid phase isoelectric fractionation system (MSWIFT) to increase the depth of proteome coverage and analyzed using LC-MS/MS. A total of 631 proteins in the mitochondrial fraction, including endoplasmic reticulum-associated and golgi-related mitochondrial proteins, were identified and classified into 12 functional categories. A total of 123 proteins demonstrated a statistically significant change in expression in at least one of the time points over the course of the experiment. The identified proteins included enzymes and transporters involved in the TCA cycle, fatty acid oxidation, and ATP synthesis. Our results indicate that cultured adipocytes enter a state of metabolic-overdrive where increased flux through the TCA cycle and increased fatty acid oxidation occur simultaneously. The proteomic data also suggest that accumulation of reduced electron carriers and the resultant oxidative stress may be attractive targets for modulating adipocyte function in metabolic disorders. 相似文献