首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
One of the experimental processes of functional proteomics is the analysis of protein interaction. Here, we review a new analytical platform, BIA–MS, for protein interaction analysis. BIA–MS is an integration of a surface plasmon resonance biosensor for real-time interaction analysis and mass spectrometry for the subsequent identification of interacting molecules.  相似文献   

4.
《Trends in biotechnology》2001,19(10):S28-S33
One of the experimental processes of functional proteomics is the analysis of protein interaction. Here, we review a new analytical platform, BIA–MS, for protein interaction analysis. BIA–MS is an integration of a surface plasmon resonance biosensor for real-time interaction analysis and mass spectrometry for the subsequent identification of interacting molecules.  相似文献   

5.
The analysis by liquid chromatography coupled to tandem mass spectrometry of complex peptide mixtures, generated by proteolysis of protein samples, is the main proteomics method used today. The approach is based on the assumption that each protein present in a sample reproducibly and predictably generates a relatively small number of peptides that can be identified by mass spectrometry. In this study this assumption was examined by a targeted peptide sequencing strategy using inclusion lists to trigger peptide fragmentation attempts. It was found that the number of peptides observed from a single protein is at least one order of magnitude greater than previously assumed. This unexpected complexity of proteomics samples implies substantial technical challenges, explains some perplexing results in the proteomics literature, and prompts the need for developing alternative experimental strategies for the rapid and comprehensive analysis of proteomes.  相似文献   

6.
7.
Quantitation is an inherent requirement in comparative proteomics and there is no exception to this for plant proteomics. Quantitative proteomics has high demands on the experimental workflow, requiring a thorough design and often a complex multi-step structure. It has to include sufficient numbers of biological and technical replicates and methods that are able to facilitate a quantitative signal read-out. Quantitative plant proteomics in particular poses many additional challenges but because of the nature of plants it also offers some potential advantages. In general, analysis of plants has been less prominent in proteomics. Low protein concentration, difficulties in protein extraction, genome multiploidy, high Rubisco abundance in green tissue, and an absence of well-annotated and completed genome sequences are some of the main challenges in plant proteomics. However, the latter is now changing with several genomes emerging for model plants and crops such as potato, tomato, soybean, rice, maize and barley. This review discusses the current status in quantitative plant proteomics (MS-based and non-MS-based) and its challenges and potentials. Both relative and absolute quantitation methods in plant proteomics from DIGE to MS-based analysis after isotope labeling and label-free quantitation are described and illustrated by published studies. In particular, we describe plant-specific quantitative methods such as metabolic labeling methods that can take full advantage of plant metabolism and culture practices, and discuss other potential advantages and challenges that may arise from the unique properties of plants.  相似文献   

8.
Lo SL  You T  Lin Q  Joshi SB  Chung MC  Hew CL 《Proteomics》2006,6(6):1758-1769
In the field of proteomics, the increasing difficulty to unify the data format, due to the different platforms/instrumentation and laboratory documentation systems, greatly hinders experimental data verification, exchange, and comparison. Therefore, it is essential to establish standard formats for every necessary aspect of proteomics data. One of the recently published data models is the proteomics experiment data repository [Taylor, C. F., Paton, N. W., Garwood, K. L., Kirby, P. D. et al., Nat. Biotechnol. 2003, 21, 247-254]. Compliant with this format, we developed the systematic proteomics laboratory analysis and storage hub (SPLASH) database system as an informatics infrastructure to support proteomics studies. It consists of three modules and provides proteomics researchers a common platform to store, manage, search, analyze, and exchange their data. (i) Data maintenance includes experimental data entry and update, uploading of experimental results in batch mode, and data exchange in the original PEDRo format. (ii) The data search module provides several means to search the database, to view either the protein information or the differential expression display by clicking on a gel image. (iii) The data mining module contains tools that perform biochemical pathway, statistics-associated gene ontology, and other comparative analyses for all the sample sets to interpret its biological meaning. These features make SPLASH a practical and powerful tool for the proteomics community.  相似文献   

9.
Palcy S  Chevet E 《Proteomics》2006,6(20):5467-5480
To date, proteomics approaches have aimed to either identify novel proteins or change in protein expression/modification in various organisms under normal or disease conditions. One major aspect of functional proteomics is to identify protein biological properties in a given context, however, forward proteomics approaches alone cannot complete this goal. Indeed, with the increasing successes of such proteomics-based research strategies and the subsequent increasing amounts of proteins identified with unknown molecular functions, approaches allowing for systematic analyses of protein functions are desired. In this review, we propose to depict the complementarities of forward and reverse proteomics approaches in the definite understanding of protein functions. This dual strategy requires a data integration loop which allows for systematic characterization of protein function(s). The details of the integrative process combining both in silico and experimental resources and tools are presented. Altogether, we believe that the integration of forward and reverse proteomics approaches supported by bioinformatics will provide an efficient path towards systems biology.  相似文献   

10.
An important component of proteomic research is the high-throughput discovery of novel proteins and protein–protein interactions that control molecular events that contribute to critical cellular functions and human disease. The interactions of proteins are essential for cellular functions. Identifying perturbation of normal cellular protein interactions is vital for understanding the disease process and intervening to control the disease. A second area of proteomics research is the discovery of proteins that will serve as biomarkers for the early detection, diagnosis and drug treatment response for specific diseases. These studies have been referred to as clinical proteomics. To discover biomarkers, proteomics research employs the quantitative comparison of peptide and protein expression in body fluids and tissues from diseased individuals (case) versus normal individuals (control). Methods that couple 2D capillary liquid chromatography (LC) and tandem mass spectrometry (MS/MS) analysis have greatly facilitated this discovery science. Coupling 2D-LC/MS/MS analysis with automated genome-assisted spectra interpretation allows a direct, high-throughput and high-sensitivity identification of thousands of individual proteins from complex biological samples. The systematic comparison of experimental conditions and controls allows protein function or disease states to be modeled. This review discusses the different purification and quantification strategies that have been developed and used in combination with 2D-LC/MS/MS and computational analysis to examine regulatory protein networks and clinical samples.  相似文献   

11.
Shotgun proteomics has become the standard proteomics technique for the large-scale measurement of protein abundances in biological samples. Despite quantitative proteomics has been usually performed using label-based approaches, label-free quantitation offers advantages related to the avoidance of labeling steps, no limitation in the number of samples to be compared, and the gain in protein detection sensitivity. However, since samples are analyzed separately, experimental design becomes critical. The exploration of spectral counting quantitation based on LC-MS presented here gathers experimental evidence of the influence of batch effects on comparative proteomics. The batch effects shown with spiking experiments clearly interfere with the biological signal. In order to minimize the interferences from batch effects, a statistical correction is proposed and implemented. Our results show that batch effects can be attenuated statistically when proper experimental design is used. Furthermore, the batch effect correction implemented leads to a substantial increase in the sensitivity of statistical tests. Finally, the applicability of our batch effects correction is shown on two different biomarker discovery projects involving cancer secretomes. We think that our findings will allow designing and executing better comparative proteomics projects and will help to avoid reaching false conclusions in the field of proteomics biomarker discovery.  相似文献   

12.
We developed JVirGel, a collection of tools for the simulation and analysis of proteomics data. The software creates and visualizes virtual two-dimensional (2D) protein gels based on the migration behaviour of proteins in dependence of their theoretical molecular weights in combination with their calculated isoelectric points. The utilization of all proteins of an organism of interest deduced from genes of the corresponding genome project in combination with the elimination of obvious membrane proteins permits the creation of an optimized calculated proteome map. The electrophoretic separation behaviour of single proteins is accessible interactively in a Java(TM) applet (small application in a web browser) by selecting a pI/MW range and an electrophoretic timescale of interest. The calculated pattern of protein spots helps to identify unknown proteins and to localize known proteins during experimental proteomics approaches. Differences between the experimentally observed and the calculated migration behaviour of certain proteins provide first indications for potential protein modification events. When possible, the protein spots are directly linked via a mouse click to the public databases SWISS-PROT and PRODORIC. Additionally, we provide tools for the serial calculation and visualization of specific protein properties like pH dependent charge curves and hydrophobicity profiles. These values are helpful for the rational establishment of protein purification procedures. The proteomics tools are available on the World Wide Web at http://prodoric.tu-bs.de/proteomics.php.  相似文献   

13.
Structural proteomics is an emerging paradigm that is gaining importance in the post-genomic era as a valuable discipline to process the protein target information being deciphered. The field plays a crucial role in assigning function to sequenced proteins, defining pathways in which the targets are involved, and understanding structure-function relationships of the protein targets. A key component of this research sector is accessing the three-dimensional structures of protein targets by both experimental and theoretical methods. This then leads to the question of how to store, retrieve, and manipulate vast amounts of sequence (1-D) and structural (3-D) information in a relational format so that extensive data analysis can be achieved. We at SBI have addressed both of these fundamental requirements of structural proteomics. We have developed an extensive collection of three-dimensional protein structures from sequence data and have implemented a relational architecture for data management. In this article we will discuss our approaches to structural proteomics and the tools that life science researchers can use in their discovery efforts.  相似文献   

14.
15.
蛋白质组分析是鉴定蛋白质种类和功能的有力工具之一。叶绿体作为光合作用的重要细胞器,叶绿体蛋白质组学成为了研究的热点,涉及的领域包括叶绿体的总蛋白质组学、亚细胞蛋白质组学、差异蛋白质组学和蛋白质的功能等。现主要介绍蛋白质组学的常用技术以及叶绿体蛋白质组学的最新研究进展。  相似文献   

16.
Karp NA  Lilley KS 《Proteomics》2007,7(Z1):42-50
Quantitative proteomics is the comparison of distinct proteomes which enables the identification of protein species which exhibit changes in expression or post-translational state in response to a given stimulus. Many different quantitative techniques are being utilized and generate large datasets. Independent of the technique used, these large datasets need robust data analysis to ensure valid conclusions are drawn from such studies. Approaches to address the problems that arise with large datasets are discussed to give insight into the types of statistical analyses of data appropriate for the various experimental strategies that can be employed by quantitative proteomic studies. This review also highlights the importance of employing a robust experimental design and highlights various issues surrounding the design of experiments. The concepts and examples discussed within will show how robust design and analysis will lead to confident results that will ensure quantitative proteomics delivers.  相似文献   

17.
An important component of proteomic research is the high-throughput discovery of novel proteins and protein-protein interactions that control molecular events that contribute to critical cellular functions and human disease. The interactions of proteins are essential for cellular functions. Identifying perturbation of normal cellular protein interactions is vital for understanding the disease process and intervening to control the disease. A second area of proteomics research is the discovery of proteins that will serve as biomarkers for the early detection, diagnosis and drug treatment response for specific diseases. These studies have been referred to as clinical proteomics. To discover biomarkers, proteomics research employs the quantitative comparison of peptide and protein expression in body fluids and tissues from diseased individuals (case) versus normal individuals (control). Methods that couple 2D capillary liquid chromatography (LC) and tandem mass spectrometry (MS/MS) analysis have greatly facilitated this discovery science. Coupling 2D-LC/MS/MS analysis with automated genome-assisted spectra interpretation allows a direct, high-throughput and high-sensitivity identification of thousands of individual proteins from complex biological samples. The systematic comparison of experimental conditions and controls allows protein function or disease states to be modeled. This review discusses the different purification and quantification strategies that have been developed and used in combination with 2D-LC/MS/MS and computational analysis to examine regulatory protein networks and clinical samples.  相似文献   

18.
Quantitative proteomics based on 2D electrophoresis (2-DE) coupled with peptide mass fingerprinting is still one of the most widely used quantitative proteomics approaches in microbiology research. Our view on the exploitation of this global expression analysis technique and its contribution and potential to push forward the field of molecular microbial physiology towards a molecular systems microbiology perspective is discussed in this article. The advances registered in 2-DE-based quantitative proteomic analysis leading to increased protein resolution, sensitivity and accuracy, and the promising use of 2-DE to gain insights into post-translational modifications at a proteome-wide level (considering all the proteins/protein forms expressed by the genome) are focused on. Given the progress made in this field, it is foreseen that the 2-DE-based approach to quantitative proteomics will continue to be a fundamental tool for microbiologists working at a genome-wide scale. Guidelines are also provided for the exploitation of expression proteomics data, based on useful computational tools, and for the integration of these data with other genome-wide expression information. The advantages and limitations of a complete 2-DE-based expression proteomics analysis, envisaging the quantification of the global changes occurring in the proteome of a given cell depending on environmental or genetic manipulations, are discussed from the microbiologist's perspective. Particular focus is given to the emerging field of toxicoproteomics, a new systems toxicity approach that offers a powerful tool to directly monitor the earliest stages of the toxicological response by identifying critical proteins and pathways that are affected by, and respond to, a chemical stress. The experimental design and the bioinformatics analysis of data used in our laboratory to gain mechanistic insights through expression proteomics into the responses of the eukaryotic model Saccharomyces cerevisiae or of Pseudomonas strains to environmental toxicants are presented as case studies.  相似文献   

19.
Quantitative proteomics based on 2D electrophoresis (2-DE) coupled with peptide mass fingerprinting is still one of the most widely used quantitative proteomics approaches in microbiology research. Our view on the exploitation of this global expression analysis technique and its contribution and potential to push forward the field of molecular microbial physiology towards a molecular systems microbiology perspective is discussed in this article. The advances registered in 2-DE-based quantitative proteomic analysis leading to increased protein resolution, sensitivity and accuracy, and the promising use of 2-DE to gain insights into post-translational modifications at a proteome-wide level (considering all the proteins/protein forms expressed by the genome) are focused on. Given the progress made in this field, it is foreseen that the 2-DE-based approach to quantitative proteomics will continue to be a fundamental tool for microbiologists working at a genome-wide scale. Guidelines are also provided for the exploitation of expression proteomics data, based on useful computational tools, and for the integration of these data with other genome-wide expression information. The advantages and limitations of a complete 2-DE-based expression proteomics analysis, envisaging the quantification of the global changes occurring in the proteome of a given cell depending on environmental or genetic manipulations, are discussed from the microbiologist’s perspective. Particular focus is given to the emerging field of toxicoproteomics, a new systems toxicity approach that offers a powerful tool to directly monitor the earliest stages of the toxicological response by identifying critical proteins and pathways that are affected by, and respond to, a chemical stress. The experimental design and the bioinformatics analysis of data used in our laboratory to gain mechanistic insights through expression proteomics into the responses of the eukaryotic model Saccharomyces cerevisiae or of Pseudomonas strains to environmental toxicants are presented as case studies.  相似文献   

20.
蛋白质组研究中分离新技术与新方法   总被引:6,自引:0,他引:6  
对于蛋白质组的研究离不开分析技术的支撑。由于样品及其基质的复杂性,为了实现蛋白质的高通量、高灵敏度、快速分析鉴定,必须发展与之匹配的新技术与新方法。多维高效液相色谱/毛细管电泳技术,部分弥补了传统2D PAGE的不足,近年来,在蛋白质分离鉴定方面取得了最令人瞩目的成绩。本文分别从多维液相色谱分离技术、多维毛细管电泳蛋白质分离平台、微柱液相-毛细管电泳联用技术、极端pH蛋白质的分离分析和蛋白质的在线富集技术等方面对蛋白质组学研究中在新技术与新方法方面近期取得的成果加以系统阐述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号