首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and purpose

The persistent influx of neutrophils into the lung and subsequent tissue damage are characteristics of COPD, cystic fibrosis and acute lung inflammation. VAP-1/SSAO is an endothelial bound adhesion molecule with amine oxidase activity that is reported to be involved in neutrophil egress from the microvasculature during inflammation. This study explored the role of VAP-1/SSAO in neutrophilic lung mediated diseases and examined the therapeutic potential of the selective inhibitor PXS-4728A.

Methods

Mice treated with PXS-4728A underwent intra-vital microscopy visualization of the cremaster muscle upon CXCL1/KC stimulation. LPS inflammation, Klebsiella pneumoniae infection, cecal ligation and puncture as well as rhinovirus exacerbated asthma models were also assessed using PXS-4728A.

Results

Selective VAP-1/SSAO inhibition by PXS-4728A diminished leukocyte rolling and adherence induced by CXCL1/KC. Inhibition of VAP-1/SSAO also dampened the migration of neutrophils to the lungs in response to LPS, Klebsiella pneumoniae lung infection and CLP induced sepsis; whilst still allowing for normal neutrophil defense function, resulting in increased survival. The functional effects of this inhibition were demonstrated in the RV exacerbated asthma model, with a reduction in cellular infiltrate correlating with a reduction in airways hyperractivity.

Conclusions and implications

This study demonstrates that the endothelial cell ligand VAP-1/SSAO contributes to the migration of neutrophils during acute lung inflammation, pulmonary infection and airway hyperractivity. These results highlight the potential of inhibiting of VAP-1/SSAO enzymatic function, by PXS-4728A, as a novel therapeutic approach in lung diseases that are characterized by neutrophilic pattern of inflammation.  相似文献   

2.
Background information. PrAO (primary amine oxidase), also known as SSAO (semicarbazide‐sensitive amine oxidase)/VAP‐1 (vascular adhesion protein‐1), is an enzyme (EC 1.4.3.21) that is highly expressed in blood vessels and participates in many cell processes, including glucose handling or inflammatory leucocyte recruitment. High activity levels of this enzyme are associated with diabetes, atherosclerosis, AD (Alzheimer's disease) or stroke, among others, thus meaning that studies concerning SSAO as a therapeutic target are becoming more frequent. However, the study of this enzyme is difficult, owing to its loss of expression in cell cultures. Results. We have developed an endothelial cell line that stably expresses the human SSAO/VAP‐1 to be used as endothelial cell model for the study of this enzyme. The transfected protein is mainly expressed as a dimer in the membrane of these cells, and we demonstrate its specific localization in the lipid rafts of endothelial cells. The protein shows levels of enzymatic activity and kinetic parameters comparable with those observed in vivo by the same cell type. The transfected SSAO/VAP‐1 is also able to mediate the adhesion of leucocytes to the endothelium, a known function of this protein under inflammatory conditions. This distinctive function is not exerted by the SSAO/VAP‐1 transfected protein in a smooth muscle cell line that expresses 3‐fold higher protein levels. These differences have been widely reported to exist in vivo. Furthermore, using this endothelial cell model, we describe for the first time the involvement of the leucocyte‐adhesion activity of SSAO/VAP‐1 in the Aβ (amyloid β‐peptide)‐mediated pro‐inflammatory effect. Conclusions. The characterization of this new cell line shows the correct behaviour of the transfected protein and endorses the use of these cellular models for the in‐depth study of the currently poorly understood functions of SSAO/VAP‐1 and its involvement in the above‐mentioned pathologies. This cellular model will be also useful for the evaluation of potential compounds that could modulate its activity for therapeutic purposes.  相似文献   

3.
Ischemic post-conditioning (Post-cond) is a phenomenon in which intermittent interruptions of blood flow in the early phase of reperfusion can protect organ from ischemia/reperfusion (I/R) injury. Recent studies demonstrated ischemic Post-cond reduced infarct size in cerebral I/R injury. However, the molecular mechanisms underlying this phenomenon are not completely understood. As inflammation is known to be detrimental to the neurological outcome during the acute phase after stroke, we investigated whether ischemic Post-cond played its protective role in preventing post-ischemic inflammation in the rat middle cerebral artery occlusion model. Rats were treated with ischemic Post-cond after 60 min of occlusion (beginning of reperfusion). The infarct volume and myeloperoxidase activity were assessed at 24 h. The lipid peroxidation levels was evaluated by malondialdehyde assay and the expressions of interleukin-1β, tumor necrosis factor-α, and intercellular adhesion molecule 1 were studied by RT-PCR or western blotting. Ischemic Post-cond decreased myeloperoxidase activity and expressions of interleukin-1β, tumor necrosis factor-α, and intercellular adhesion molecule 1. Ischemic Post-cond also reduced infarct volume and lipid peroxidation levels. These findings indicated that ischemic Post-cond may be a promising neuroprotective approach for focal cerebral I/R injury and it is achieved, at least in part, by the inhibition of inflammation.  相似文献   

4.
5.
6.
目的:观察异丙酚对全脑缺血/再灌注大鼠海马细胞外谷氨酸(Glu)和抗坏血酸(AA)的影响,探讨异丙酚脑保护作用机制。方法:采用Pulsinelli-Brlerley四血管阻断法制备全脑缺血模型,应用脑微透析技术结合高效液相色谱(HPLc)检测大鼠海马细胞外Glu、AA含量的变化。结果:与缺血/再灌注组各对应时点相比较,异丙酚处理组大鼠海马细胞外Glu、AA含量明显降低,统计结果差异均有显著性(P〈0.05,或〈0.01)。结论:缺血/再灌注早期应用异丙酚不仅减少兴奋性氨基酸释放,还能清除自由基、抑制脂质过氧化反应而产生脑保护作用。  相似文献   

7.
目的探讨AMD3100阻断SDF-1/CXCR4轴后,对局灶脑缺血/再灌注大鼠缺血半暗带血管再生的影响。方法将SD大鼠随机分为假手术组(S组)、模型组(IR组)、AMD3100组(IRA组)、生理盐水组(IRN组)。采用线栓法制备大鼠局灶脑缺血/再灌注模型,缺血2h后将IR、IRA和IRN组分为再灌注12h,1、3和7d四个亚组。HE染色观察局灶脑缺血/再灌注后大脑皮质病理变化。免疫组化法检测CD31在缺血半暗带表达。荧光定量PCR检测外周血中AC133mRNA表达。结果与IRN组比较,IRA 12h外周血中AC133mRNA显著升高,第1d升高达峰值(P0.01),IRA 3dAC133mRNA表达比IRA1d显著减少(P0.05);与IRN组比较,IRA组CD31阳性血管密度在第1d无显著变化(P0.05),第3和7d血管密度显著减少(P0.01);IRA 7d梗死区由大量坏死神经细胞和泡沫细胞填充,坏死较严重。结论持续注射AMD3100能动员干/祖细胞快速进入外周血,但可能抑制局灶脑缺血/再灌注大鼠缺血半暗带血管再生,加重梗死区坏死。  相似文献   

8.
9.
目的:观察小鼠大脑中动脉闭塞(MCAO)模型制备前5 d 连续补充1,25-二羟维生素D3(1,25-VitD3)对缓解小鼠缺血/再灌注(I/R)后脑损伤中的作用。方法:雄性C57BL6小鼠随机分为Sham组、Vehicle组和1,25-VitD3组,每组10只小鼠;Vehicle组和1,25-VitD3组小鼠均进行大脑MCAO1 h,再灌注24 h后处死小鼠,1,25-VitD3组MCAO手术前5 d连续腹腔注射,100 ng/(kg·d);取各组小鼠脑缺血半影区,进行TTC染色、RT-PCR及免疫组化检测,采用神经功能评分评估小鼠功能缺陷。结果:与sham组相比,Vehicle组小鼠脑梗死体积明显增加,小鼠脑组织中促炎介质IL-6、IL-1β和Gp91phox表达均明显增高(P<0.05);与Vehicle组相比,补充1,25-VitD3可减少I/R小鼠大约50%梗死体积(P<0.05), 1,25-VitD3组小鼠脑组织中IL-6、IL-1β和Gp91phox表达明显降低(P<0.05),小鼠脑内T调节细胞标志物Foxp3 mRNA表达明显升高(P<0.05),而转录因子Rorc mRNA表达明显较低(P<0.05),提示Th17/γδT细胞反应减少,小鼠脑损伤部位中性粒细胞数量明显降低(P<0.05)。结论:维生素D可以缓解动脉闭塞(MCAO)再灌注脑梗死发展,其机制可能是通过调节小鼠脑I/R中炎症反应。  相似文献   

10.
目的研究IL-1受体拮抗剂(IL-1ra)对离体猪肾缺血/再灌注(IR)损伤的作用及机制。方法采用离体猪肾自体全血再灌注损伤模型,将32只猪肾随机分为对照组(n=11)、IR组(n=11)和IL-1ra组(n=10)。供肾猪均电击制动。对照组开腹后,即取肾下极作检测。IR组和IL-1ra组分别取再灌注2h尿及再灌注2.5h肾组织作检测。结果IR组肾皮质中MDA、TNF-α、IL-8含量高于对照组,而SOD、Na+-K+-ATP酶活力低于对照组,差异均具有显著性(P<0.01,以下同)。IL-1ra组肾皮质中MDA含量和SOD活力分别高于和低于对照组,差异均具有显著性;同IR组比较,IL-1ra组MDA、TNF-α、IL-8含量和尿量蛋白含量较低,SOD、Na+-K+-ATP酶活力较高。差异均具有显著性。IL-1ra组光、电镜下肾组织结构损伤较IR组轻。结论IL-1ra具有减轻离体猪肾IR损伤的作用。  相似文献   

11.
Autophagy is the general term of lysosomal degradation of substances in cells, which is considered the key to maintaining the normal structure and function of the heart. It also has a correlation with several heart diseases, in particular, myocardial ischemia/reperfusion (I/R) injury. At the stage of myocardial ischemia, autophagy degrades nonfunctional cytoplasmic proteins providing the critical nutrients for the critical life activities, thereby suppressing cell apoptosis and necrosis. However, autophagy is likely to affect the heart negatively in the reperfusion stage. Mammalian target of rapamycin (mTOR) and Beclin1 are two vital autophagy-related molecules in myocardial I/R injury playing significant roles in different stages. In the ischemia stage, mTOR plays its roles through AMPK/mTOR and phosphoinositide 3-kinase/Akt/mTOR pathway, whereas Beclin1 plays its roles through its upregulation in the reperfusion stage. A possible interaction between mTOR and Beclin1 has been reported recently, and further studies need to be done to find the underlying interaction between the two molecules in myocardial I/R injury  相似文献   

12.
13.
Objective: Experimental results from cultured cells suggest that there is cross-talk between nitric oxide (NO) and extracellular signal-regulated kinase (ERK) in their anti-apoptotic effect. However, the cross-talk between these two molecules in either direction has not been confirmed in the whole organ or whole animal level. The aim of the present study was to determine whether ERK may play a role in the anti-apoptotic and cardioprotective effects of NO in myocardial ischemia/reperfusion (MI/R). Methods: Isolated perfused mouse hearts were subjected to 20 min of global ischemia and 120 min of reperfusion and treated with vehicle or an NO donor (SNAP, 10 μM) during reperfusion. To determine the role of ERK1/2 in the anti-apoptotic and cardioprotective effects of NO, hearts were pre-treated (10 min before ischemia) with U0126, a selective MEK1/2 inhibitor (1 μM). Results: Treatment with SNAP exerted significant cardioprotective effects as evidenced by reduced cardiac apoptosis (TUNEL and caspase 3 activity, p < 0.01), and improved cardiac functional recovery (p < 0.01). In addition, treatment with SNAP resulted in a 2.5-fold increase in ERK activation when compared with heart receiving vehicle. Pre-treatment with U0126 slightly increased post-ischemic myocardial apoptosis but had no significant effect on cardiac functional recovery in this isolated perfused heart model. However, treatment with U0126 completely blocked SNAP-induced ERK activation and markedly, although not completely, inhibited the cardioprotection exerted by SNAP. Conclusion: These results demonstrate that nitric oxide exerts its anti-apoptotic and cardioprotective effects, at least in part, by activation of ERK in ischemic/reperfused heart. The first two authors contribute equally to this study.  相似文献   

14.
目的: 观察中风胶囊对脑缺血/再灌注损伤(CIRI)模型鼠脑组织自噬相关蛋白表达的影响,初步揭示其对神经元损伤保护的分子机制。方法: 采用改良线栓法构建大鼠脑缺血/再灌注损伤模型,随机将60只雄性SD大鼠分为假手术组、模型组、丁苯酞组(0.054 g/kg)、中风胶囊高剂量组(1.08 g/kg)、中风胶囊中剂量组(0.54 g/kg)、中风胶囊低剂量组(0.27 g/kg),每组10只。造模结束后灌胃给药10 d,每天1次,实验结束后处死各组大鼠,摘取脑组织。各组大鼠末次给药24 h后进行神经功能评分;HE染色法观察各组大鼠脑组织病理形态;ELISA法检测各组大鼠血清雌二醇(E2)和卵泡刺激素(FSH);RT-PCR法与Western blot法分别测定各组大鼠脑组织PI3K/Akt/Beclin1信号通路关键基因及蛋白的表达。结果: 与假手术组比较,模型组大鼠体重及脑组织中p-PI3K、p-Akt等蛋白表达均显著降低,脑指数、神经功能缺损评分及脑组织Beclin1、LC3基因和蛋白表达均显著升高(P<0.05或P<0.01),脑组织结构排列疏松,间质水肿,神经细胞呈三角形,核固缩深染。与模型组相比,中风胶囊高剂量组大鼠体重显著升高,神经功能缺损评分显著下降(P<0.05),脑组织病理损伤较模型组明显改善;中风胶囊各剂量组的脑指数及脑组织Beclin1、LC3的基因和蛋白表达均显著降低,脑组织中p-PI3K、p-Akt等蛋白表达均显著升高(P<0.05或P<0.01)。结论: 中风胶囊通过调控PI3K/Akt/Beclin1信号通路中Beclin1和LC3的表达来抑制CIRI模型鼠的自噬反应,从而发挥保护其脑神经元损伤的作用。  相似文献   

15.
目的:探讨人参皂甙Rb1、Rg1在肾缺血/再灌注血清诱导HK-2细胞凋亡中对Bol-2、Bax表达的影响。方法:制备家兔肾缺血/再灌注血清(SIR)和对照组血清(SC)用于HK-2细胞培养,TUNEL法检测细胞凋亡。实验分组:对照组、缺血/再灌注组、Rb1干预组、Rg1干预组,培养24h后免疫细胞化学法检测Bcl-2、Bax的表达。结果:与缺血/再灌注组比较,Rb1干预组和Rg1干预组Bax的表达明显下降(P〈0.01),Bcl-2/Bax比值增大。结论:人参皂甙Rb1、Rg1对肾缺血/再灌注血清诱导HK-2细胞凋亡具有保护作用。  相似文献   

16.
目的:探讨川芎嗪注射液对兔肺缺血/再灌注损伤时血红素氧合酶-1(HO-1)表达与活性的影响.方法:采用在体兔单肺原位缺血/再灌注损伤模型.实验兔20只,随机均分为肺缺血-再灌注损伤组(模型组)和川芎嗪注射液治疗组(川芎嗪组).用免疫组化、原位杂交方法观察HO-1在兔肺组织中的表达变化;测定肺组织湿干重比(W/D)及肺泡损伤数(IAR);电镜观察肺组织超微结构的改变.结果:HO-1在模型组、川芎嗪组肺血管内皮、部分血管平滑肌、外膜层及部分气道上皮均有阳性表达,免疫组化(原位杂交)的平均吸光度值分别为0.168±0.016(0.148±0.013)、0.186±0.014(0.158±0.012).川芎嗪组HO-1的表达水平明显高于模型组(P<0.01),W/D、IAR值显著低于模型组(P<0.01),肺组织形态学异常改变轻于模型组.结论:川芎嗪注射液可通过提高肺组织HO-1的表达水平,对肺缺血/再灌注损伤发挥积极的保护作用.  相似文献   

17.
Obesity enhances the frequency and severity of acute kidney injury (AKI). Telmisartan pre-treatment was used experimentally in the amelioration of ischemia/reperfusion (IR)-induced AKI. However, there is a lack of evidence regarding its beneficial effects on AKI in obese animals. The present study, therefore, aimed to explore the protective effects of garlic and/or telmisartan against renal damage induced by unilateral IR in obese rats. Meloxicam was used as a standard anti-inflammatory agent. Prophylactic oral administration of meloxicam (3?mg kg?1), garlic (500?mg kg?1) and/or telmisartan (5 and 10?mg kg?1) for 4 wk protected against renal function deterioration induced by IR in obese rats. Both doses of telmisartan significantly reduced serum total cholesterol and triacyglycerol levels as well as peri-renal adipocytes size and renal fibrosis. Renal nuclear factor-kappa B immunoreactivity, tumor necrosis factor-alpha content as well as interleukin-10, adiponectin receptor 1 and macrophages (M1, M2) polarization markers (CD11c, CD206) mRNA expressions were down-regulated in ischemic kidney tissues and white adipose tissues around them by all treatments. Moreover, garlic, telmisartan and their combinations significantly suppressed oxidative stress in renal ischemic tissues. Histological picture was also improved by these treatments. Interestingly, the combinations provided a greater protection than their monotherapy in a dose-dependent manner. We suppose that this combination may be a promising prophylactic regimen for managing AKI in case of obesity. Thus, future experimental and clinical large-scale studies are necessary.  相似文献   

18.
19.
目的:探讨肢体缺血/再灌注(I/R)致肝脏损伤时肝组织诱导型血红素氧合酶(HO-1)表达的变化及其意义.方法:夹闭大鼠双侧股动脉根部4 h、开放2~24 h,制备肢体I/R模型.RT-PCR检测肝组织HO-1 mRNA表达的变化,免疫组化染色法观察HO-1蛋白在肝内的生成与分布.对肢体I/R大鼠应用锌原卟啉抑制其体内HO-1活性后,光镜观察其肝组织的病理变化.结果:肢体I/R后肝组织HO-1 mRNA的表达水平显著高于各对照组,再灌12 h表达至峰值,至再灌24 h仍显著高于各对照组(P<0.01).肢体I/R组肝组织内出现大量弥散分布的HO-1阳性肝细胞,抑制HO-1活性,使肢体I/R组肝组织损伤明显加重.结论:肢体I/R损伤可诱导肝细胞HO-1基因表达上调,所诱生的HO-1对肝细胞具有保护效应.  相似文献   

20.
Objective: To explore the role and mechanism of the Kelch sample related protein-1-nuclear factor erythroid-2 related factor 2/antioxidant response element (Keap1-Nrf2/ARE) signaling pathway in protection of dexmedetomidine (DEX) preconditioning against myocardial ischemia/reperfusion injury (MIRI). Methods: A total of 70 male SD rats were randomly divided into seven equal groups (n=10): blank control (S group), ischemia/reperfusion injury (C group), DEX preconditioning (DEX group), tertiary butylhydroquinone (tBHQ) control (tBHQ group), combined tBHQ and DEX preconditioning (tBHQ+DEX group), all-trans retinoic acid (ATRA) control (ATRA group), and combined ATRA and DEX preconditioning (ATRA+DEX group). Serum creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI) concentrations were measured by ELISA kits, and the infarct size (IS) was assessed by Evan’s blue and 2,3,5-triphenyltetrazolium chloride (TTC) staining. Oxidative stress was assessed through Western blotting for expression of Keap1-Nrf2/ARE pathway members and oxidative stress markers. Results: Cardioprotection of DEX, tBHQ, and tBHQ+DEX preconditioning treatments were shown as lower concentrations of serum CK-MB and cTnI and a smaller IS following MIRI in rats compared with those of MIRI rats without pre-treatment. In addition, tBHQ+DEX preconditioning exhibited stronger myocardial protection compared with DEX preconditioning. Mechanistically, the cardioprotection offered by DEX, tBHQ, and tBHQ+DEX preconditioning treatments was mediated via exerting antioxidant stress through activation of the Keap1-Nrf2/ARE signal transduction pathway. Conversely, the protective effects of DEX were diminished by blocking the Keap1-Nrf2/ARE pathway with inhibitor ATRA. Conclusion: DEX preconditioning protects against MIRI by exerting antioxidant stress through activation of the Keap1-Nrf2/ARE signal transduction pathway, while inhibition of the Keap1-Nrf2/ARE signal transduction pathway reverses the protective effect of DEX preconditioning on MIRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号