共查询到20条相似文献,搜索用时 0 毫秒
1.
Inflammation has been demonstrated to be the key factor for intervertebral disc degeneration (IVD), which remains a major public health problem. Isofraxidin is a coumarin compound that possesses strong anti-inflammatory activity. However, the role of isofraxidin in IVD remains unclear. The aim of this study was to evaluate the effects of isofraxidin on inflammatory response in human nucleus pulposus cells (NPCs) exposed to interleukin-1β (IL-1β). The results proved that isofraxidin attenuated the IL-1β-induced significant increases in inflammatory mediators and cytokines including nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), and IL-6. Besides, isofraxidin also inhibited the induction effect of IL-1β on matrix metalloproteinases (MMP)-3 and MMP-13. Moreover, the NF-κB activation caused by IL-1β was significantly inhibited by isofraxidin treatment. These findings suggested that isofraxidin alleviates IL-1β-induced inflammation in NPCs. Our work provided an idea that isofraxidin might act as a novel preventive role in IVD. 相似文献
2.
Galectin-3 is highly expressed in notochordal nucleus pulposus (NP) and thought to play important physiological roles; however, regulation of its expression remains largely unexplored. The aim of the study was to investigate if TGFβ regulates Galectin-3 expression in NP cells. TGFβ treatment resulted in decreased Galectin-3 expression. Bioinformatic analysis using JASPAR and MatInspector databases cross-referenced with published ChIP-Seq data showed nine locations of highly probable Smad3 binding in the LGALS3 proximal promoter. In NP cells, TGFβ treatment resulted in decreased activity of reporters harboring several 5′ deletions of the proximal Galectin-3 promoter. While transfection of NP cells with constitutively active (CA)-ALK5 resulted in decreased promoter activity, DN-ALK5 blocked the suppressive effect of TGFβ on the promoter. The suppressive effect of Smad3 on the Galectin-3 promoter was confirmed using gain- and loss-of-function studies. Transfection with DN-Smad3 or Smad7 blocked TGFβ mediated suppression of promoter activity. We also measured Galectin-3 promoter activity in Smad3 null and wild type cells. Noteworthy, promoter activity was suppressed by TGFβ only in wild type cells. Likewise, stable silencing of Smad3 in NP cells using sh-Smad3 significantly blocked TGFβ-dependent decrease in Galectin-3 expression. Treatment of human NP cells isolated from tissues with different grades of degeneration showed that Galectin-3 expression was responsive to TGF-β-mediated suppression. Importantly, Galectin-3 synergized effects of TNF-α on inflammatory gene expression by NP cells. Together these studies suggest that TGFβ, through Smad3 controls Galectin-3 expression in NP cells and may have implications in the intervertebral disc degeneration. 相似文献
3.
This study aimed to determine the effects of SKI on interleukin (IL)-1β-induced apoptosis of nucleus pulposus (NP) cells, intervertebral disc degeneration (IDD), and the Wnt signaling pathway. NP tissue specimens of different Pfirrmann grades (II–V) were collected from patients with different grades of IDD. Real-time polymerase chain reaction and western blotting were used to compare SKI mRNA and protein expression in NP tissues from patients. Using the IL-1β-induced IDD model, NP cells were infected with lentivirus-coated si-SKI to downregulate the expression of SKI and treated with LiCl to evaluate the involvement of the Wnt/β-catenin signaling pathway. Western blotting, immunofluorescence, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to detect NP cell apoptosis, extracellular matrix (ECM) metabolism, and related protein expression changes in the Wnt/β-catenin signaling pathway. To investigate the role of SKI in vivo, a rat IDD model was established by needle puncture of the intervertebral disc. Rats were injected with lentivirus-coated si-SKI and evaluated by magnetic resonance imaging (MRI), and hematoxylin and eosin (HE) and safranin O staining. SKI expression positively correlated with the severity of human IDD. In the IL-1β-induced NP cell degeneration model, SKI expression increased significantly and reached a peak at 24 h. SKI knockdown protected against IL-1β-induced NP cell apoptosis and ECM degradation. LiCl treatment reversed the protective effects of si-SKI on NP cells. Furthermore, lentivirus-coated si-SKI injection partially reversed the NP tissue damage in the IDD model in vivo. SKI knockdown reduced NP cell apoptosis and ECM degradation by inhibiting the Wnt/β-catenin signaling pathway, ultimately protecting against IDD. Therefore, SKI may be an effective target for IDD treatment. 相似文献
4.
Intervertebral disc degeneration (IDD) is among the most common spinal disorders, pathologically characterized by excessive cell apoptosis and production of proinflammatory factors. Pharmacological targeting of nucleus pulposus (NP) degeneration may hold promise in IDD therapy, but it is limited by adverse side effects and nonspecificity of drugs. In this study, we used a natural compound, andrographolide (ANDRO), which has been widely used to intervene inflammatory and apoptotic diseases in the investigation of NP degeneration based on IDD-patients-derived NP cells by lipopolysaccharide (LPS) treatment for the preservation of degeneration. The results showed that LPS maintained the degeneration status of NP cells as evidenced by a high apoptosis rate and the expression of degenerative and inflammatory mediators after LPS treatment. ANDRO reversed the effects of LPS-caused degeneration of NP cells and maintained the phenotype of NP cells, as demonstrated by flow cytometry, degenerative mediators ( ADAMTS4 and ADAMTS5), inflammatory factors ( COX2, PGE2, MMP-13, and MMP-3), biomarkers of NP cells ( SOX9, ACAN, and COL2A1) expressions, and glycosaminoglycan secretion. We also found the involvement of the nuclear factor kappa-light-chain-enhancer of the activated B cells (NF-κB) pathway in ANDRO treatment, indicating that ANDRO prevented the LPS-preserved degeneration of NP cells by inhibiting the NF-κB pathway. This study may provide a reference for clinic medication of IDD therapy. 相似文献
6.
ObjectivesTo determine the role of microRNA-15b (miR-15b) in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation in the nucleus pulposus (NP).ResultsMiR-15b was up-regulated in degenerative NP tissues and in IL-1β-stimulated NP cells, as compared to the levels in normal controls (normal tissue specimens from patients with idiopathic scoliosis). Bioinformatics and luciferase activity analyses showed that mothers against decapentaplegic homolog 3 (SMAD3), a key mediator of the transforming growth factor-β signaling pathway, was directly targeted by miR-15b. Functional analysis demonstrated that miR-15b overexpression aggravated IL-1β-induced ECM degradation in NP cells, while miR-15b inhibition had the opposite effects. Prevention of IL-1β-induced NP ECM degeneration by the miR-15b inhibitor was attenuated by small-interfering-RNA-mediated knockdown of SMAD3. In addition, activation of MAP kinase and nuclear factor-κB up-regulated miR-15b expression and down-regulated SMAD3 expression in IL-1β-stimulated NP cells.ConclusionsMiR-15b contributes to ECM degradation in intervertebral disc degeneration (IDD) via targeting of SMAD3, thus providing a novel therapeutic target for IDD treatment. 相似文献
7.
Interleukin-7 (IL-7) concentrations are increased in the blood of CD4+ T cell depleted individuals, including HIV-1 infected patients. High IL-7 levels might stimulate T cell activation and, as we have shown earlier, IL-7 can prime resting T cell to CD95 induced apoptosis as well. HIV-1 infection leads to B cell abnormalities including increased apoptosis via the CD95 (Fas) death receptor pathway and loss of memory B cells. Peripheral B cells are not sensitive for IL-7, due to the lack of IL-7Ra expression on their surface; however, here we demonstrate that high IL-7 concentration can prime resting B cells to CD95-mediated apoptosis via an indirect mechanism. T cells cultured with IL-7 induced high CD95 expression on resting B cells together with an increased sensitivity to CD95 mediated apoptosis. As the mediator molecule responsible for B cell priming to CD95 mediated apoptosis we identified the cytokine IFN-γ that T cells secreted in high amounts in response to IL-7. These results suggest that the lymphopenia induced cytokine IL-7 can contribute to the increased B cell apoptosis observed in HIV-1 infected individuals. 相似文献
8.
Antisense oligonucleotides (AOs) have been shown to induce dystrophin expression in muscles cells of patients with Duchenne
Muscular Dystrophy (DMD) and in the mdx mouse, the murine model of DMD. However, ineffective delivery of AOs limits their therapeutic potential. Copolymers of cationic
poly(ethylene imine) (PEI) and non-ionic poly(ethylene glycol) (PEG) form stable nanoparticles when complexed with AOs, but
the positive surface charge on the resultant PEG-PEI-AO nanoparticles limits their biodistribution. We adapted a modified
double emulsion procedure for encapsulating PEG-PEI-AO polyplexes into degradable polylactide-co-glycolic acid (PLGA) nanospheres.
Formulation parameters were varied including PLGA molecular weight, ester end-capping, and sonication energy/volume. Our results
showed successful encapsulation of PEG-PEI-AO within PLGA nanospheres with average diameters ranging from 215 to 240 nm. Encapsulation
efficiency ranged from 60 to 100%, and zeta potential measurements confirmed shielding of the PEG-PEI-AO cationic charge.
Kinetic measurements of 17 kDa PLGA showed a rapid burst release of about 20% of the PEG-PEI-AO, followed by sustained release
of up to 65% over three weeks. To evaluate functionality, PEG-PEI-AO polyplexes were loaded into PLGA nanospheres using an
AO that is known to induce dystrophin expression in dystrophic mdx mice. Intramuscular injections of this compound into mdx mice resulted in over 300 dystrophin-positive muscle fibers distributed throughout the muscle cross-sections, approximately
3.4 times greater than for injections of AO alone. We conclude that PLGA nanospheres are effective compounds for the sustained
release of PEG-PEI-AO polyplexes in skeletal muscle and concomitant expression of dystrophin, and may have translational potential
in treating DMD. 相似文献
10.
Amyloid-β 1-42 (Aβ 1-42) is strongly associated with Alzheimer's disease (AD). The aim of this study is to elucidate whether and how miR-6076 participates in the modulation of amyloid-β (Aβ)-induced neuronal damage. To construct the neuronal damage model, SH-SY5Y cells were treated with Aβ 1-42. By qRT-PCR, we found that miR-6076 is significantly upregulated in Aβ 1-42-treated SH-SY5Y cells. After miR-6076 inhibition, p-Tau and apoptosis levels were downregulated, and cell viability was increased. Through online bioinformatics analysis, we found that B-cell lymphoma 6 (BCL6) was a directly target of miR-6076 via dual-luciferase reporter assay. BCL6 overexpression mediated the decrease in elevated p-Tau levels and increased viability in SH-SY5Y cells following Aβ1-42 treatment. Our results suggest that down-regulation of miR-6076 could attenuate Aβ 1-42-induced neuronal damage by targeting BCL6, which provided a possible target to pursue for prevention and treatment of Aβ-induced neuronal damage in AD. 相似文献
11.
In our previous study, we reported that CELF2 has a tumour-suppressive function in glioma. Here, we performed additional experiments to elucidate better its role in cancer. The expression profile of CELF2 was analysed by the GEPIA database, and Kaplan–Meier curves were used to evaluate the overall survival rates. Four different online databases were used to predict miRNAs targeting CELF2, and the luciferase assay was performed to identify the binding site. The biological effects of miR- 363- 3p and CELF2 were also investigated in vitro using MTT, Transwell, and flow cytometry assays. Western blotting, qPCR, and TOP/FOP flash dual-luciferase assays were performed to investigate the impact of miR- 363- 3p and CELF2 on epithelial-to-mesenchymal transition (EMT) and the Wnt/β-catenin pathway. The effect of miR- 363- 3p was also tested in vivo using a xenograft mouse model. We observed an abnormal expression pattern of CELF2 in glioma cells, and higher CELF2 expression correlated with better prognosis. We identified miR- 363- 3p as an upstream regulator of CELF2 and confirmed its direct binding to the 3′-untranslated region of CELF2. Cell function experiments showed that miR- 363- 3p affected multiple aspects of glioma cells. Suppressing miR- 363- 3p expression inhibited glioma cell proliferation and invasion, as well as promoted cell death via attenuating EMT and blocking the Wnt/β-catenin pathway. These effects could be abolished by the downregulation of CELF2. Treatment with ASO- miR- 363- 3p decreased tumour size and weight in nude mice. In conclusion, miR- 363- 3p induced the EMT, which resulted in increased migration and invasion and reduced apoptosis in glioma cell lines, via the Wnt/β-catenin pathway by targeting CELF2. 相似文献
13.
Amyloid-β (Aβ) has been reported to cause oxidative damage of neurons leading to neurotoxicity in a variety of diseases and cancers. As an anticancer drug, brusatol (BR) has been shown to have potent cytotoxic effects on various cancer cell lines. In this study, the effect and mechanism of BR on Aβ-induced neurotoxicity was investigated in U-251 glioma cells. Using the MTT assay, the results suggest that BR ameliorated cell injury induced by Aβ in U-251 cells. After running Hoechst and Western blot assays, BR prevented cell apoptosis induced by Aβ in U-251 cells. In addition, BR inhibited the increased reactive oxygen species and mitochondrial membrane potential levels induced by Aβ in U-251 cells using the DCFH-DA and Rh123 method. Furthermore, BR induced the Nrf2/HO-1 pathway by inhibiting the PI3K/AKT/mTOR pathway to inhibit neurotoxicity elicited by Aβ. These results suggest that brustasol is a valuable potential antitumor drug available for chemotherapy. 相似文献
14.
Cartilage endplate (CEP) degeneration has been considered as one of important factors related to intervertebral disc degeneration (IVDD). Previous researches have showed that Rac1 played a pivotal role in chondrocyte differentiation. However, the effect of Rac1 during the process of CEP degeneration remains unclear. Herein, we explored the effect of Rac1 on CEP degeneration and elucidated the underlying molecular mechanism. We found expression of Rac1-GTP increased in human-degenerated CEP tissue and IL-1β-stimulated rat endplate chondrocytes (EPCs). Our study revealed that Rac1 inhibitor NSC23766 treatment promoted the expression of collagen II, aggrecan and Sox-9, and decreased the expression of ADTAMTS5 and MMP13 in IL-1β-stimulated rat EPCs. Moreover, we also found that NSC23766 could suppress the activation of Wnt/β-catenin pathway, suggesting that the beneficial effects of Rac1 inhibition in EPCs are mediated through the Wnt/β-catenin signalling. Besides, puncture-induced rats models showed that NSC23766 played a protective role on CEP and disc degeneration. Collectively, these findings demonstrated that Rac1 inhibition delayed the EPCs degeneration and its potential mechanism may be associated with Wnt/β-catenin pathway regulation, which may help us better understand the association between Rac1 and CEP degeneration and provide a promising strategy for delaying the progression of IVDD. 相似文献
15.
Background Human mast cells are multifunctional cells capable of a wide variety of inflammatory responses. Baicalein (BAI), isolated from the traditional Chinese herbal medicine Huangqin ( Scutellaria baicalensis Georgi), has been shown to have anti-inflammatory effects. We examined its effects and mechanisms on the expression of inflammatory cytokines in an IL-1β- and TNF-α-activated human mast cell line, HMC-1. Methods HMC-1 cells were stimulated either with IL-1β (10 ng/ml) or TNF-α (100 U/ml) in the presence or absence of BAI. We assessed the expression of IL-6, IL-8, and MCP-1 by ELISA and RT-PCR, NF-κB activation by electrophoretic mobility shift assay (EMSA), and IκBα activation by Western blot. Results BAI (1.8 to 30 μM) significantly inhibited production of IL-6, IL-8, and MCP-1 in a dose-dependent manner in IL-1β-activated HMC-1. BAI (30 μM) also significantly inhibited production of IL-6, IL-8, and MCP-1 in TNF-α-activated HMC-1. Inhibitory effects appear to involve the NF-κB pathway. BAI inhibited NF-κB activation in IL-1β- and TNF-α-activated HMC-1. Furthermore, BAI increased cytoplasmic IκBα proteins in IL-1β- and TNF-α-activated HMC-1. Conclusion Our results showed that BAI inhibited the production of inflammatory cytokines through inhibition of NF-κB activation and IκBα phosphorylation and degradation in human mast cells. This inhibitory effect of BAI on the expression of inflammatory cytokines suggests its usefulness in the development of novel anti-inflammatory therapies. 相似文献
16.
The mechanism of intervertebral disc degeneration is still unclear, and there are no effective therapeutic strategies for treating this condition. miRNAs are naturally occurring macromolecules in the human body and have many biological functions. Therefore, we hope to elucidate whether miRNAs are associated with intervertebral disc degeneration and the underlying mechanisms involved. In our study, differentially expressed miRNAs were predicted by the GEO database and then confirmed by qPCR and in situ hybridization. Apoptosis of nucleus pulposus cells was detected by flow cytometry and Bcl2, Bax and caspase 3. Deposition of extracellular matrix was assessed by Alcian blue staining, and the expression of COX2 and MMP13 was detected by immunofluorescence, Western blot and qPCR. Moreover, qPCR was used to detect the expression of miR27a and its precursors. The results showed that miR27a was rarely expressed in healthy intervertebral discs but showed increased expression in degenerated intervertebral discs. Ectopic miR27a expression inhibited apoptosis, suppressed the inflammatory response and attenuated the catabolism of the extracellular matrix by targeting FSTL1. Furthermore, it seems that the expression of miR27a was up-regulated by TNF-α via the P38 signalling pathway. So we conclude that TNF-α and FSTL1 engage in a positive feedback loop to promote intervertebral disc degeneration. At the same time, miR27a is up-regulated by TNF-α via the P38 signalling pathway, which ameliorates inflammation, apoptosis and matrix degradation by targeting FSTL1. Thus, this negative feedback mechanism might contribute to the maintenance of a low degeneration load and would be beneficial to maintain a persistent chronic disc degeneration. 相似文献
17.
IntroductionInflammation plays a key role in the progression of intervertebral disc degeneration, a condition strongly implicated as a cause of lower back pain. The objective of this study was to investigate the therapeutic potential of poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with interleukin-1 receptor antagonist (IL-1ra) for sustained attenuation of interleukin-1 beta (IL-1β) mediated degradative changes in the nucleus pulposus (NP), using an in vitro model. MethodsIL-1ra was encapsulated in PLGA microspheres and release kinetics were determined over 35 days. NP agarose constructs were cultured to functional maturity and treated with combinations of IL-1β and media conditioned with IL-1ra released from microspheres at intervals for up to 20 days. Construct mechanical properties, glycosaminoglycan content, nitrite production and mRNA expression of catabolic mediators were compared to properties for untreated constructs using unpaired Student''s t-tests. ResultsIL-1ra release kinetics were characterized by an initial burst release reducing to a linear release over the first 10 days. IL-1ra released from microspheres attenuated the degradative effects of IL-1β as defined by mechanical properties, glycosaminoglycans (GAG) content, nitric oxide production and mRNA expression of inflammatory mediators for 7 days, and continued to limit functional degradation for up to 20 days. ConclusionsIn this study, we successfully demonstrated that IL-1ra microspheres can attenuate the degradative effects of IL-1β on the NP for extended periods. This therapeutic strategy may be appropriate for treating early-stage, cytokine-mediated disc degeneration. Ongoing studies are focusing on testing IL-1ra microspheres in an in vivo model of disc degeneration, as a prelude to clinical translation. 相似文献
18.
The inhibitory effect of four structurally related flavonoids, apigenin, baicalein, luteolin and quercetin on the matrix metalloproteinase (MMP)-9 and -13 expressions in osteoblasts was investigated. Treatment with IL-1β induced both MMP-9 and -13 mRNA expressions as measured by quantitative real-time PCR. Luteolin and apigenin decreased IL-1β-induced MMP-9 and -13 mRNA expressions, whereas baicalein and quercetin showed little effects. Related to signalling, treatment with IL-1β induced ERK phosphorylation as measured by Western blotting. Further studies showed that transfection with a constitutively active form of the Ras protein (Ras(V12)) induced stronger ERK phosphorylation and upregulated MMP-9 and -13 mRNA expressions. However, transfection with a dominant-negative form of the Ras protein (Ras(N17)) inhibited the ERK activation and MMP-9 and -13 mRNA expressions induced by IL-1β, which supported the involvement of ERK signalling in IL-1β-induced MMP-9 and -13 expressions. Treatment with luteolin effectively inhibited the IL-1β-induced ERK activation in dose-dependent manner. Taken together, luteolin might inhibit IL-1β-induced MMP-9 and -13 expressions, in part, via inhibition of ERK signalling. 相似文献
19.
This study aimed to investigate the specific role of Wnt/β-catenin signaling in compression-induced apoptosis, autophagy, and senescence in rat nucleus pulposus (NP) cells. Initially, the cells underwent various periods of exposure to 1.0 MPa compression. Wnt/β-catenin signaling associated molecules were assessed in detail, and then 0, 24 and 48 hours exposure periods were selected. The cells were then divided into control, Wnt/β-catenin inhibitor (IWP-2), Wnt/β-catenin activator (LiCl), and β-catenin overexpression groups. After 0, 24, and 48 hours of compression, apoptosis, autophagy, and senescence were evaluated by Western blot analysis and real-time polymerase chain reaction and were visually observed by Hoechst33258, monodansylcadaverine, and SA-β-gal stainings, respectively. Additionally, the regulatory effect of Wnt/β-catenin signaling on cell morphology, viability, cell cycle, death ratio, and ultrastructure was detected to thoroughly evaluate the survival capacity of NP cells. The results established that compression elicited a time-dependent activation of Wnt/β-catenin signaling. The IWP-2 treatment decreased cell survival rate, which corresponded to downregulation of autophagy as well as increases in apoptosis and senescence. LiCl treatment enabled more efficient of cell survival accompanied by increased autophagy and downregulated apoptosis and senescence; however, in contrast to LiCl, overexpression of β-catenin aggravated compression-induced NP cells death. In conclusion, moderate activation of Wnt/β-catenin signaling enables more efficient of NP cells survival via downregulation of apoptosis, senescence, and upregulation of autophagy, and overactivation of Wnt/β-catenin signaling achieved the opposite effect. Treatment strategies that aim to regulate Wnt/β-catenin signaling might be a novel target for improving compression-induced NP cells death and potential treatment of intervertebral disc degeneration. 相似文献
20.
Levofloxacin has been reported to have cytotoxicity to chondrocytes in vitro. And 17β-estradiol has been widely studied for its protective effects against cell apoptosis. Based on apoptotic cell model induced by levofloxacin, the purpose of this study was to explore the mechanism by which 17β-estradiol protects rat nucleus pulposus cells from apoptosis. Inverted phase-contrast microscopy, flow cytometry, and caspase-3 activity assay were used to find that levofloxacin induced marked apoptosis, which was abolished by 17β-estradiol. Interestingly, estrogen receptor antagonist, ICI182780, and functional blocking antibody to α 2β 1 integrin, both prohibited the effect of 17β-estradiol. Simultaneously, levofloxacin decreased cellular binding ability to type II collagen, which was also reversed by 17β-estradiol. Furthermore, western blot and real-time quantitative PCR were used to find that integrin α 2β 1 was responsible for estrogen-dependent anti-apoptosis, which was time–response and dose–response effect. 17β-estradiol was proved for the first time to protect rat nucleus pulposus cells against levofloxacin-induced apoptosis by upregulating integrin α 2β 1 signal pathway. 相似文献
|