首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myostatin (Mstn) is a secreted growth and differentiation factor that belongs to the transforming growth factor-β (TGF-β) superfamily. Mstn has been well characterized as a regulator of myogenesis and has been shown to play a critical role in postnatal muscle regeneration. Herein, we report for the first time that Mstn is expressed in both epidermis and dermis of murine and human skin and that Mstn-null mice exhibited delayed skin wound healing attributable to a combination of effects resulting from delayed epidermal reepithelialization and dermal contraction. In epidermis, reduced keratinocyte migration and protracted keratinocyte proliferation were observed, which subsequently led to delayed recovery of epidermal thickness and slower reepithelialization. Furthermore, primary keratinocytes derived from Mstn-null mice displayed reduced migration capacity and increased proliferation rate as assessed through in vitro migration and adhesion assays, as well as bromodeoxyuridine incorporation and Western blot analysis. Moreover, in dermis, both fibroblast-to-myofibroblast transformation and collagen deposition were concomitantly reduced, resulting in a delayed dermal wound contraction. These decreases are due to the inhibition of TGF-β signaling. In agreement, the expression of decorin, a naturally occurring TGF-β suppressor, was elevated in Mstn-null mice; moreover, topical treatment with TGF-β1 protein rescued the impaired skin wound healing observed in Mstn-null mice. These observations highlight the interplay between TGF-β and Mstn signaling pathways, specifically through Mstn regulation of decorin levels during the skin wound healing process. Thus we propose that Mstn agonists might be beneficial for skin wound repair.  相似文献   

2.
3.
Th17 cells, which have been implicated in autoimmune diseases, require IL-6 and TGF-β for early differentiation. To gain pathogenicity, however, Th17 cells require IL-1β and IL-23. The underlying mechanism by which these confer pathogenicity is not well understood. Here we show that Sprouty4, an inhibitor of the PLCγ-ERK pathway, critically regulates inflammatory Th17 (iTh17) cell differentiation. Sprouty4-deficient mice, as well as mice adoptively transferred with Sprouty4-deficient T cells, were resistant to experimental autoimmune encephalitis (EAE) and showed decreased Th17 cell generation in vivo. In vitro, Sprouty4 deficiency did not severely affect TGF-β/IL-6-induced Th17 cell generation but strongly impaired Th17 differentiation induced by IL-1/IL-6/IL-23. Analysis of Th17-related gene expression revealed that Sprouty4-deficient Th17 cells expressed lower levels of IL-1R1 and IL-23R, while RORγt levels were similar. Consistently, overexpression of Sprouty4 or pharmacological inhibition of ERK upregulated IL-1R1 expression in primary T cells. Thus, Sprouty4 and ERK play a critical role in developing iTh17 cells in Th17 cell-driven autoimmune diseases.  相似文献   

4.

Background

Impaired wound healing frequently occurs in diabetes mellitus (DM) and is implicated in impaired angiogenesis. Long non-coding RNA (lncRNA) H19 has been reported as being reduced in DM and played a critical role in inducing angiogenesis. Thus, we hypothesized that H19 may affect impaired wound healing in streptozotocin (STZ)-induced diabetic mice transfused with autologous blood preserved in standard preservative fluid or modified preservative fluid.

Methods

Fibroblasts in injured skin were isolated and cultured in vitro. After location of H19 in fibroblasts using fluorescence in situ hybridization (FISH), RNA-pull down, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), Co immunoprecipitation (COIP) and dual luciferase reporter gene assay were used to verify the binding of H19 to HIF-1α.

Results

The modified preservative fluid preserved autologous blood increased the H19 expression in fibroblasts, and maintained better oxygen-carrying and oxygen release capacities as well as coagulation function. Furthermore, H19 promoted HIF-1α histone H3K4me3 methylation and increased HIF-1α expression by recruiting EZH2. H19 promoted fibroblast activation by activating HIF-1α signaling pathway in fibroblasts and enhanced wound healing in diabetic mice.

Conclusions

Taken together, H19 accelerated fibroblast activation by recruiting EZH2-mediated histone methylation and modulating the HIF-1α signaling pathway, whereby augmenting the process of modified preservative fluid preserved autologous blood enhancing the postoperative wound healing in diabetic mice.
  相似文献   

5.
The wound healing process is a highly orchestrated process, which includes inflammation, re-epithelialization, granulation tissue formation, matrix formation and re-modeling. In this paper, we attempt to determine if bio-active ceramic resource powder particles had an effect on cutaneous wound healing. Furthermore, we investigated its related mechanism and the expression of Smads of cutaneous wound healing, which can be accelerated by bio-active ceramic ointment. Topically applied lesions of 5%, 10% and 15% bio-active ceramic ointment (AO) showed accelerated wound closure, re-epithelialization, and the related immediate down stream of TGF-β (p-Smad2/3 and Smad3) was suppressed. In particular, 10% and 15% AO lesions became closed faster at Days 3 and 4 of post-wound and p-Smad2/3 was also suppressed. All AO lesions showed accelerated mild wound closure at Day 6, but there were no significant difference. Several papers reported that Smad3 may mediate the signaling pathways that is inhibitory to wound healing, as the deletion of Smad3 leads to enhanced re-epithelialization and contraction of the wound area. This study showed that topical, bio-active ceramic ointment applications accelerated wound closure, re-epithelialization and the suppression of Smad proteins (p-Smad2/3, Smad3). The data revealed that the suppression of Smad3, which was induced by bio-active ceramic resources powder particles affected re-epithelialization and cutaneous wound closure. At the end of this paper, we concluded that bio-active ceramic resources affect cutaneous wound healing by accelerating the re-epithelialization of keratinocytes and that is mediated by the suppression of related protein, Smad3.  相似文献   

6.
7.
The composition of 15 V T gene subfamilies has been examined by Southern hybridization among a broad spectrum of colony bred rat and mouse species extending phylogenetically from Rattus to Mus musculus domesticus. Most mouse species contain a similar content of V T genes as determined by the number of hybridizing restriction fragment (RF) bands. Furthermore, the extent of restriction fragment length polymorphism (RFLP) appears to be limited. Some V T gene families, however, are missing from Rattus (VT7, V T12) and M. shortridgei (V T9, V T16). Extension of the V T survey to a panel of 38 wild-caught mice reveals that nearly a third lack specific hybridization to the V T5 probe. Previous reports have established that the mouse inbred strains SJL, C57BR, C57L, and SWR lack 50% of their V T repertoire, including V T5 (Behlke et al. 1985). This study demonstrates that natural populations of mice also carry a significantly reduced V T gene repertoire.  相似文献   

8.

Background

The potential of anti-aging effect of DPP-4 inhibitors is unknown. This study was performed to determine whether linagliptin, a DPP-4 inhibitor, could protect against premature aging in klotho?/? mice.

Methods

Klotho?/? mice exhibit multiple phenotypes resembling human premature aging, including extremely shortened life span, cognitive impairment, hippocampal neurodegeneration, hair loss, muscle atrophy, hypoglycemia, etc. To investigate the effect of linagliptin on these aging-related phenotypes, male klotho?/? mice were divided into two groups: (1) control group fed the standard diet, and (2) linagliptin group fed the standard diet containing linagliptin. Treatment with linagliptin was performed for 4 weeks. The effect of linagliptin on the above mentioned aging-related phenotypes was examined.

Results

Body weight of klotho?/? mice was greater in linagliptin group than in control group (11.1 ± 0.3 vs 9.9 ± 0.3 g; P < 0.01), which was associated with greater gastrocnemius muscle weight (P < 0.01) and greater kidney weight (P < 0.05) in linagliptin group. Thus, linagliptin significantly prevented body weight loss in klotho?/? mice. Survival rate of klotho?/? mice was greater in linagliptin group (93%) compared to control group (67%), although the difference did not reach statistical significance (P = 0.08). None of linagliptin-treated klotho?/? mice had alopecia during the treatment (P < 0.05 vs control klotho?/? mice). Latency of klotho?/? mice in passive avoidance test was larger in linagliptin group than in control group (P < 0.05), indicating the amelioration of cognitive impairment by linagliptin. Cerebral blood flow of klotho?/? mice was larger in linagliptin group than in control group (P < 0.01), being associated with greater cerebral phospho-eNOS levels (P < 0.05) in linagliptin group. Neuronal cell number in hippocampal CA1 region was greater in linagliptin group than in control group (P < 0.05). Linagliptin group had greater cerebral phospho-Akt (P < 0.05) and phospho-CREB (P < 0.05) than control group. Thus, linagliptin ameliorated brain aging in klotho?/? mice. The degree of hypoglycemia in klotho?/? mice was less in linagliptin group than in control group, as estimated by the findings of OGTT.

Conclusions

Out work provided the evidence that DPP-4 inhibition with linagliptin slowed the progression of premature aging in klotho?/? mice, and provided a novel insight into the potential role of DPP-4 in the mechanism of premature aging.
  相似文献   

9.
Wound healing (WH) impairment is a well-documented phenomenon in clinical and experimental diabetes. Sex hormones, in addition to a number of signaling pathways including transforming growth factor-β1 (TGF-β1)/Smads and TNF-α/NF-κB in macrophages and fibroblasts, appear to play a cardinal role in determining the rate and nature of WH. We hypothesized that a defect in resolution of inflammation and an enhancement in TNF-α/NF-κB activity induced by estrogen deficiency contribute to the impairment of TGF-β signaling and delayed WH in diabetes models. Goto-Kakizaki (GK) rats and full thickness excisional wounds were used as models for type 2 diabetes (T2D) and WH, respectively. Parameters related to the various stages of WH were assessed using histomorphometry, western blotting, real-time PCR, immunofluorescence microscopy and ELISA-based assays. Retarded re-epithelialization, suppressed angiogenesis, delayed wound closure, reduced estrogen level and heightened states of oxidative stress were characteristic features of T2D wounds. These abnormalities were associated with a defect in resolution of inflammation, shifts in macrophage phenotypes, increased β3-integrin expression, impaired wound TGF-β1 signaling (↓p-Smad2/↑Smad7) and enhanced TNF-α/NFκB activity. Human/rat dermal fibroblasts of T2D, compared to corresponding control values, displayed resistance to TGF-β-mediated responses including cell migration, myofibroblast formation and p-Smad2 generation. A pegylated form of soluble TNF receptor-1 (PEG-sTNF-RI) or estrogen replacement therapy significantly improved re-epithelialization and wound contraction, enhanced TGFβ/Smad signaling, and polarized the differentiation of macrophages toward an M2 or "alternatively" activated phenotype, while limiting secondary inflammatory-mediated injury. Our data suggest that reduced estrogen levels and enhanced TNF-α/NF-κB activity delayed WH in T2D by attenuating TGFβ/Smad signaling and impairing the resolution of inflammation; most of these defects were ameliorated with estrogen and/or PEG-sTNF-RI therapy.  相似文献   

10.
Background and aimPancreatic fibrosis increases pancreatic cancer risk in chronic pancreatitis (CP). Pancreatic stellate cells (PSCs) play a critical role in pancreatic fibrosis by transforming growth factor-β (TGFβ) has been shown to inhibit transforming growth factor-β receptor (TGFβR)-mediated Smad and no-Smad signaling pathways. Thus, the effects of Hsp90 inhibitor on pancreatic fibrosis are evaluated in CP mice, and the association between Hsp90 and biological functions of PSCs is further investigated in vitro.MethodsThe effects of Hsp90 inhibitor 17AAG on pancreatic fibrosis were assessed in caerulein-induced CP mice, and primary PSCs were used to determine the role of Hsp90 inhibitor 17AAG in vitro.ResultsWe observed increased expression of Hsp90 in pancreatic tissues of caerulein-induced CP mice. Hsp90 inhibitor 17AAG ameliorated pancreatic inflammation and fibrosis in caerulein-induced CP mice. In vitro, Hsp90 inhibitor 17AAG inhibited TGFβ1-induced activation and extracellular matrix accumulation of PSCs by blocking TGFβR-mediated Smad2/3 and PI3K /Akt/GSK-3β signaling pathways.Hsp90 inhibitor 17AAG degraded TGFβRII by a ubiquitin-proteasome pathway, co-immunoprecipitation showed an interaction between Hsp90 and TGFβRII in PSCs.ConclusionsThe study suggests that an Hsp90 inhibitor 17AAG remarkable prevents the development of pancreatic fibrosis in caerulein-induced CP mice, and suppresses activation and extracellular matrix accumulation of PSCs in vitro. The current results provide a potential treatment strategy based on Hsp90 inhibition for pancreatic fibrosis in CP.  相似文献   

11.
12.
13.
Superantigens (SAgs) are powerful T-cell stimulatory proteins. Because an atopic dermatitis (AD) model NC/Nga mice had two endogenous SAgs, namely minor lymphocyte-stimulating locus-1a (Mls-1a) and mouse mammary tumor virus (MMTV)(SHN), SAg-responsive T-cells bearing Vβ5.1, Vβ6, Vβ8.1, Vβ8.2, Vβ8.3, Vβ9, and Vβ11 should be endogenously deleted. Here, we discuss that the endogenous SAgs-expression may be involved in AD-sensitivity in NC/Nga mice.  相似文献   

14.
N-linked glycosylation is a critical determinant of protein structure and function, regulating processes such as protein folding, stability and localization, ligand-receptor binding and intracellular signalling. TβRII [type II TGF-β (transforming growth factor β) receptor] plays a crucial role in the TGF-β signalling pathway. Although N-linked glycosylation of TβRII was first demonstrated over a decade ago, it was unclear how this modification influenced TβRII biology. In the present study, we show that inhibiting the N-linked glycosylation process successfully hinders binding of TGF-β1 to TβRII and subsequently renders cells resistant to TGF-β signalling. The lung cancer cell line A549, the gastric carcinoma cell line MKN1 and the immortal cell line HEK (human embryonic kidney)-293 exhibit reduced TGF-β signalling when either treated with two inhibitors, including tunicamycin (a potent N-linked glycosylation inhibitor) and kifunensine [an inhibitor of ER (endoplasmic reticulum) and Golgi mannosidase I family members], or introduced with a non-glycosylated mutant version of TβRII. We demonstrate that defective N-linked glycosylation prevents TβRII proteins from being transported to the cell surface. Moreover, we clearly show that not only the complex type, but also a high-mannose type, of TβRII can be localized on the cell surface. Collectively, these findings demonstrate that N-linked glycosylation is essentially required for the successful cell surface transportation of TβRII, suggesting a novel mechanism by which the TGF-β sensitivity can be regulated by N-linked glycosylation levels of TβRII.  相似文献   

15.
Liver -glucuronidase is structurally altered in inbred strain PAC so that a peptide subunit with a more basic isoelectric point, GUS-SN, is produced. This allele of -glucuronidase was transferred to strain C57BL/6J by 12 backcross matings to form the congenic line B6 · PAC-Gus n. Liver -glucuronidase activity was halved in males of the congenic strain compared to normal males. The lowered activity was specifically accounted for by a decrease in the lysosomal component. There was no alteration in the concentration of microsomal activity. This alteration in the subcellular distribution of -glucuronidase in Gus n/Gus n mice was confirmed by two independent gel electrophoretic systems which separate microsomal and lysosomal components. -Glucuronidase activity was likewise approximately halved in mutant spleen, lung, and brain, organs which contain exclusively or predominantly lysosomal -glucuronidase. The loss of liver lysosomal -glucuronidase activity was shown by immunotitration to be due to a decrease in the number of -glucuronidase molecules in lysosomes of the congenic strain. The Gus n structural alteration likely causes the lowered lysosomal -glucuronidase activity since the two traits remain in congenic animals. Heterozygous Gus n/Gus b animals had intermediate levels of liver -glucuronidase. Also, the effect was specific, in that three other lysosomal enzymes were not reproducibly lower in Gus n/Gus n mice. Gus n is, therefore, an unusual example of a mutation which causes a change in the subcellular distribution of a two-site enzyme.This work was supported by National Institutes of Health Grants GM-33559 and GM-33160 and National Science Foundation Grant PCM-8215808.  相似文献   

16.
Liang Z  Wu S  Li Y  He L  Wu M  Jiang L  Feng L  Zhang P  Huang X 《PloS one》2011,6(8):e23346
Toll-like receptors (TLRs) play an important role in innate immunity against invading pathogens. Although TLR signaling has been indicated to protect cells from infection of several viruses, the role of TLRs in Dengue virus (DENV) replication is still unclear. In the present study, we examined the replication of DENV serotype 2 (DENV2) by challenging hepatoma cells HepG2 with different TLR ligands. Activation of TLR3 showed an antiviral effect, while pretreatment of other TLR ligands (including TLR1/2, TLR2/6, TLR4, TLR5 or TLR7/8) did not show a significant effect. TLR3 ligand poly(I:C) treatment prior to viral infection or simultaneously, but not post-treatment, significantly down-regulated virus replication. Pretreatment with poly(I:C) reduced viral mRNA expression and viral staining positive cells, accompanying an induction of the type I interferon (IFN-β) and type III IFN (IL-28A/B). Intriguingly, neutralization of IFN-β alone successfully restored the poly(I:C)-inhibited replication of DENV2. The poly(I:C)-mediated effects, including IFN induction and DENV2 suppression, were significantly reversed by IKK inhibitor, further suggesting that IFN-β is the dominant factor involved in the poly(I:C) mediated antiviral effect. Our study presented the first evidence to show that activation of TLR3 is effective in blocking DENV2 replication via IFN-β, providing an experimental clue that poly(I:C) may be a promising immunomodulatory agent against DENV infection and might be applicable for clinical prevention.  相似文献   

17.
Lymphotoxin-β receptor (LTβR) axis plays a crucial role in development and compartmentalization of peripheral lymphatic organs. But, it is also required for the appropriate function and maintenance of structural integrity of the thymus: in LTβR-deficient animals the clonal deletion of autoreactive lymphocytes is impaired and differentiation of thymic medullary epithelial cells is disturbed. In this study, using several markers, we showed that thymic metallophilic macrophages were lacking in LTβR-deficient mice. In tumor necrosis factor receptor-I (p55)-deficient mice (which we used as positive control) thymic metallophilic cells were located, similarly as in normal mice, in the thymic cortico-medullary zone at the junction of cortex and medulla. These findings show that LTβR is necessary for maintenance of metallophilic macrophages in the thymus and provide further evidence that these cells may represent a factor involved in thymic negative selection.  相似文献   

18.
The role of farnesoid X receptor (FXR) in the development of atherosclerosis has been unclear. Here, LDL receptor (LDLR−/−) or apolipoprotein E (apoE−/−) female or male mice were fed a Western diet and treated with a potent synthetic FXR agonist, WAY-362450. Activation of FXR blocked diet-induced hypertriglyceridemia and elevations of non-HDL cholesterol and produced a near complete inhibition of aortic lesion formation. WAY-362450 also induced small heterodimer partner (SHP) expression and repressed cholesterol 7α-hydroxylase (CYP7A1) and sterol 12 α-hydroxylase (CYP8B1) expression. To determine if SHP was essential for these protective activities, LDLR−/−SHP−/− and apoE−/−SHP−/− mice were similarly treated with WAY-362450. Surprisingly, a notable sex difference was observed in these mice. In male LDLR−/−SHP−/− or apoE−/−SHP−/− mice, WAY-362450 still repressed CYP7A1 and CYP8B1 expression by 10-fold and still strongly reduced non-HDL cholesterol levels and aortic lesion area. In contrast, in the female LDLR−/−SHP−/− or apoE−/−SHP−/− mice, WAY-362450 only slightly repressed CYP7A1 and CYP8B1 expression and did not reduce non-HDL cholesterol or aortic lesion size. WAY-362450 inhibition of hypertriglyceridemia remained intact in LDLR−/− or apoE−/− mice lacking SHP of both sexes. These results suggest that activation of FXR protects against atherosclerosis in the mouse, and this protective effect correlates with repression of bile acid synthetic genes, with mechanistic differences between male and female mice.  相似文献   

19.
The single-chain variable fragment, scFv-h3D6, has been shown to prevent in vitro toxicity induced by the amyloid β (Aβ) peptide in neuroblastoma cell cultures by withdrawing Aβ oligomers from the amyloid pathway. Present study examined the in vivo effects of scFv-h3D6 in the triple-transgenic 3xTg-AD mouse model of Alzheimer disease. Prior to the treatment, five-month-old female animals, corresponding to early stages of the disease, showed the first behavioral and psychological symptoms of dementia -like behaviors. Cognitive deficits included long- and short-term learning and memory deficits and high swimming navigation speed. After a single intraperitoneal dose of scFv-h3D6, the swimming speed was reversed to normal levels and the learning and memory deficits were ameliorated. Brain tissues of these animals revealed a global decrease of Aβ oligomers in the cortex and olfactory bulb after treatment, but this was not seen in the hippocampus and cerebellum. In the untreated 3xTg-AD animals, we observed an increase of both apoJ and apoE concentrations in the cortex, as well as an increase of apoE in the hippocampus. Treatment significantly recovered the non-pathological levels of these apolipoproteins. Our results suggest that the benefit of scFv-h3D6 occurs at both behavioral and molecular levels.  相似文献   

20.
The transforming growth factor-β (TGF-β) pathway regulates diverse cellular processes. It signals via serine/threonine kinase receptors and intracellular Smad and non-Smad effector proteins. In cancer cells, aberrant TGF-β signalling can lead to loss of growth inhibition and an increase in invasion, epithelial-to-mesenchymal transition (EMT) and metastasis. Therapeutic targeting of the pro-oncogenic TGF-β responses is currently being explored as a potential therapy against certain invasive and metastatic cancer types. The ubiquitin post-translational regulation system is emerging as a key regulatory mechanism for the control of TGF-β pathway components. In this review, we focus on the role of deubiquitinases (DUBs), which counteract the activity of E3 ubiquitin ligases. We will discuss the mechanisms by which specific DUBs control Smad and non-Smad TGF-β signalling routes, and how perturbation of the expression and function of DUBs contributes to misregulation of TGF-β signalling in cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号