首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

The present study elucidates the protective potential of bromelain against dichlorvos intoxication in mice brains. Dichlorvos induces the oxidative stress by disproportionating the balance between free radicals generation and their scavenging in neurons which leads to neuronal degeneration.

Methods

In this study, mice were divided into four groups-group I (control), group II (dichlorvos treated), group III (bromelain treated) and group IV (exposed to both bromelain and dichlorvos both).

Results

Dichlorvos treatment increased the levels of thiobarbituric acid reactive substances (TBARS) and protein carbonyl content (PCC) which indicate the increased oxidative stress. Meanwhile, brain endogenous antioxidants and cholinesterases level was decreased after dichlorvos exposure. Levels of TBARS and PCC decreased whereas cholinesterases level was recorded to be elevated after bromelain exposure.

Conclusion

Bromelain offered neuroprotection by decreasing oxidative stress and augmenting cholinesterases in mice brains. This study highlights the invulnerability of bromelain against oxidative and cholinergic deficits in mice brains.
  相似文献   

2.

Objective

To investigate the effects of oxidative stress injury in dextran sulfate sodium (DSS)-induced colitis in mice treated with mesenchymal stem cells (MSC).

Results

Mice exposed to oral administration of 2% DSS over 7 days presented a high disease activity index and an intense colonic inflammation. Systemic infusion of MSC protected from severe colitis, reducing weight loss and diarrhea while lowering the infiltration of inflammatory cells. Moreover, toxic colitis injury increased oxidative stress. Administration of DSS decreased reduced glutathione (GSH) and superoxide dismutase (SOD) activity, and increased thiobarbituric acid-reactive substances levels in the colon. No alteration was found in catalase (CAT) and glutathione peroxidase (GPx) activity. Otherwise, MSC transplantation was able to prevent the decrease of GSH levels and SOD activity suggestive of an antioxidant property of MSC.

Conclusion

The oxidative stress is a pathomechanism underlying the pathophysiology of colitis and MSC play an important role in preventing the impairment of antioxidants defenses in inflamed colon.
  相似文献   

3.
4.

Background

We need new biomarkers that can predict cardiovascular disease to improve both diagnosis and therapeutic strategies. The CIRCULATING CELLS study was designed to study the role of several cellular mediators of atherosclerosis as biomarkers of coronary artery disease (CAD). An objective and reproducible method for the quantification of CAD extension is required to establish relationships with these potential biomarkers. We sought to analyse the correlation of the SYNTAX score with known CAD risk factors to test it as a valid marker of CAD extension.

Methods and results

A subgroup of 279 patients (67.4% males) were included in our analysis. Main exclusion criteria were a history of previous percutaneous coronary intervention or surgical revascularisation that prevent an accurate assessment of the SS. Diabetes mellitus, smoking, renal insufficiency, body mass index and a history of CAD and myocardial infarction were all positively and strongly associated with a higher SYNTAX score after adjustment for the non-modifiable biological factors (age and sex). In the multivariate model, age and male sex, along with smoking and renal insufficiency, remain statistical significantly associated with the SYNTAX score.

Conclusion

In a selected cohort of revascularisation-naive patients with CAD undergoing coronary angiography, non-modifiable cardiovascular risk factors such as advanced age, male sex, as well as smoking and renal failure were independently associated with CAD complexity assessed by the SYNTAX score. The SYNTAX score may be a valid marker of CAD extension to establish relationships with potential novel biomarkers of coronary atherosclerosis.
  相似文献   

5.

Background and aims

Iron (Fe) toxicity is a wide-spread stress in lowland rice production. The aim of this study was to differentiate between responses to acute Fe stress during the vegetative stage and chronic Fe stress throughout the growing period.

Methods

Six rice genotypes were tested in a semi-artificial greenhouse setup, in which acute (almost 1500 mg L?1 Fe in soil solution during the vegetative stage) and chronic (200 to 300 mg L?1 Fe throughout the season) Fe toxicity were simulated.

Results

Acute Fe stress induced early development of heavy leaf bronzing, whereas moderate symptoms occurred in the chronic treatment throughout the season. Grain yields were only reduced in the chronic stress treatment (?23 %) due to reductions in spikelet fertility, grain number and grain weight. Symptom formation during the early growth stages did not reflect yield responses in all genotypes. Only one genotype showed increases in grain Fe concentrations (24 % in the acute stress and 44 % in the chronic stress) compared to the control.

Conclusions

Contrasting genotypes responded differently to acute and chronic Fe toxicity, and one genotype showed consistent tolerance and the ability to translocate excess Fe into grains. These traits can be useful in the adaptive breeding of rice for Fe toxic environments.
  相似文献   

6.

Background

Thoracic aortic dissection (TAD) is one of the most severe aortic diseases. The study aimed to explore the potential role of heat shock protein 27 (HSP27) in the pathogenesis of TAD using an in vitro model of oxidative stress in vascular smooth muscle cells (VSMCs).

Methods

HSP27 was analyzed in aortic surgical specimens from 12 patients with TAD and 8 healthy controls. A lentiviral vector was used to overexpress HSP27 in rat aortic VSMCs. Cell proliferation and apoptosis were measured under oxidative stress induced by H2O2.

Results

HSP27 expression was significantly higher in aortic tissue from patients with TAD and VSMCs in the aortic media were the main cell type producing HSP27. Elevated oxidative stress was also detected in the TAD samples. Overexpression of HSP27 significantly attenuated H2O2-induced inhibition of cell proliferation. Furthermore, HSP27 was found to decrease H2O2-induced cell apoptosis and oxidative stress.

Conclusions

These results suggest that HSP27 expression promotes VSMC viability, suppresses cell apoptosis, and confers protection against oxidative stress in TAD.
  相似文献   

7.

Objectives

To establish an efficient expression system for a fusion protein of glutathione S-transferase and cecropin B (GST-CB) and to clarify the antibacterial mechanism of CB.

Results

The optimal incubation time and methanol concentration for induced expression of CB were 36 h and 1 % w/v, respectively. The yield of GST-CB was 2.2 g/l. The minimum inhibitory concentrations of GST-CB towards Staphylococcus aureus subsp. saprophyticus (ATCC 15305) and Escherichia coli strain CFT073 were 250 and 125 μg/ml, respectively. Notably, mutations of proline 24 (P24) in CB produced a polypeptide without antimicrobial activity.

Conclusion

The fusion protein GST-CB, which has a broad spectrum antimicrobial activity, can be abundantly expressed in Pichia pastoris GS115, and P24 may be an important amino acid for the antimicrobial activity of GST-CB.
  相似文献   

8.

Introduction

Allograft rejection is still an important complication after kidney transplantation. Currently, monitoring of these patients mostly relies on the measurement of serum creatinine and clinical evaluation. The gold standard for diagnosing allograft rejection, i.e. performing a renal biopsy is invasive and expensive. So far no adequate biomarkers are available for routine use.

Objectives

We aimed to develop a urine metabolite constellation that is characteristic for acute renal allograft rejection.

Methods

NMR-Spectroscopy was applied to a training cohort of transplant recipients with and without acute rejection.

Results

We obtained a metabolite constellation of four metabolites that shows promising performance to detect renal allograft rejection in the cohorts used (AUC of 0.72 and 0.74, respectively).

Conclusion

A metabolite constellation was defined with the potential for further development of an in-vitro diagnostic test that can support physicians in their clinical assessment of a kidney transplant patient.
  相似文献   

9.

Aims

Glucose-6-phosphate dehydrogenase (G6PDH) has been reported to be involved in resistance to various environmental stresses. However, the role of G6PDH in aluminum (Al) toxicity remains unclear.

Methods

Physiological and biochemical methods together with histochemical analysis were used to investigate the participation of G6PDH in Al-induced inhibition of root growth.

Results

Exposure to high Al concentration caused a significant increase in the activities of total and cytosolic G6PDH in roots of soybean. Al-induced inhibition of root growth and oxidative stress were alleviated by a G6PDH inhibitor. Reactive oxygen species (ROS) accumulation in Al-treated root apexes could be abolished by a NADPH oxidase inhibitor. Furthermore, treatment with a G6PDH inhibitor reduced NADPH content and NADPH oxidase activity in Al-treated root apexes. Further investigation demonstrates that nitric oxide (NO) mediates Al-induced increase in cytosolic G6PDH activity by modulating the expression of genes encoding cytosolic G6PDH. In addition, nitrate reductase pathway is mainly responsible for Al-induced NO production in root apexes.

Conclusions

These results indicate that NADPH produced by NO-modulated cytosolic G6PDH in root apexes is responsible for ROS accumulation mediated by NADPH oxidase under Al stress, subsequently suffering from oxidative stress and thus causing the inhibition of root elongation.
  相似文献   

10.

Background

Kounis syndrome (KS) has been described as the coincidental occurrence of acute coronary syndromes during an allergic reaction with cardiac anaphylaxis. It is caused by inflammatory mediators released after exposure to drugs, food, environmental and other triggers. Oxidative stress occurring in various inflammatory disorders causes molecular damage with the production of advanced oxidation products (AOPPs) and advanced glycation end products (AGEs).

Case presentation

Markers of oxidative stress were evaluated in a patient who had experienced KS after antibiotic administration in order to investigate the possible role of these molecules in KS. No data, up to now, are available on biomarkers of oxidative stress in patients with drug-induced KS.

Conclusions

AOPPs, but not AGEs, were significantly increased in the KS affected patient compared to controls as already reported in mastocytosis affected patients.
  相似文献   

11.

Background

It is well known that Mediterranean Diet can positively influence the health of each individual, in particular it is know that fibers have an important role. However, in Mediterranean cities most people do not have a close adherence to Mediterranean diet. Thus, in our study, we considered fibers like β-glucans that have been added to pasta with a percentage of 6 %. Our study aimed to evaluate the capacity of β-glucans intake on oxidative stress and inflammation in a cohort of middle aged slightly overweight subjects.

Methods

We used a longitudinal study design. The study lasted 30 days during which time, each participant acted with no food restriction. Participants underwent morning fasting blood venous sample for blood chemistry and other biological parameters at the beginning of the study and after 30 days of pasta supplemented with 6 % of β-glucan intake 4 times a week. We performed anthropometric, biochemical, oxidative stress and cytokine analysis at the beginning and the end of study.

Results

After the 30 days of pasta intake we obtained a significant decrease of LDL-cholesterol, IL-6 and AGEs levels.

Conclusion

The results confirmed a capacity of β-glucans intake to lower oxidative stress. Additional longitudinal observation on community-based cohorts are needed to confirm these data and investigate the biological mechanisms through which effects are induced, and to fully explore the therapeutic potential of β-glucans.
  相似文献   

12.

Introduction

Endurance races have been associated with a substantial amount of adverse effects which could lead to chronic disease and long-term performance impairment. However, little is known about the holistic metabolic changes occurring within the serum metabolome of athletes after the completion of a marathon.

Objectives

Considering this, the aim of this study was to better characterize the acute metabolic changes induced by a marathon.

Methods

Using an untargeted two dimensional gas chromatography time-of-flight mass spectrometry metabolomics approach, pre- and post-marathon serum samples of 31 athletes were analyzed and compared to identify those metabolites varying the most after the marathon perturbation.

Results

Principle component analysis of the comparative groups indicated natural differentiation due to variation in the total metabolite profiles. Elevated concentrations of carbohydrates, fatty acids, tricarboxylic acid cycle intermediates, ketones and reduced concentrations of amino acids indicated a metabolic shift between various fuel substrate systems. Additionally, elevated odd-chain fatty acids and α-hydroxy acids indicated the utilization of α-oxidation and autophagy as alternative energy-producing mechanisms. Adaptations in gut microbe-associated markers were also observed and correlated with the metabolic flexibility of the athlete.

Conclusion

From these results it is evident that a marathon places immense strain on the energy-producing pathways of the athlete, leading to extensive protein degradation, oxidative stress, mammalian target of rapamycin complex 1 inhibition and autophagy. A better understanding of this metabolic shift could provide new insights for optimizing athletic performance, developing more efficient nutrition regimens and identify strategies to improve recovery.
  相似文献   

13.

Purpose

Atopic dermatitis (AD) is a chronically relapsing, pruritic, eczematous skin disorder accompanying allergic inflammation. AD is triggered by oxidative stress and immune imbalance. The effect of oral arjunolic acid (AA) on 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis in mice was investigated.

Methods

Repeated epicutaneous application of DNCB to the ear and shaved dorsal skin of mice was performed to induce AD-like symptoms and skin lesions: 250mg/kg AA was given orally for three weeks to assess its anti-pruritic effects. Serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-6, IL-10, immunoglobulin (Ig)E and caspase-3 were assessed by ELISA.

Results

We found that AA alleviated DNCB-induced AD-like symptoms as quantified by skin lesions, dermatitis score, ear thickness and scratching behavior. Levels of reactive oxygen species in the AA group were significantly inhibited compared with those in the DNCB group. In parallel, AA blocked a DNCBinduced reduction in serum levels of IL-4 and IL-10 associated with an attenuation of DNCB-induced increases in serum TNF-α, IL-6, IgE and caspase-3.

Conclusions

The results indicate that AA suppresses DNCB-induced AD in mice via redox balance and immune modulation, and could be a safe clinical treatment for AD.
  相似文献   

14.
15.

Background

One central concept in evolutionary ecology is that current and residual reproductive values are negatively linked by the so-called cost of reproduction. Previous studies examining the nature of this cost suggested a possible involvement of oxidative stress resulting from the imbalance between pro- and anti-oxidant processes. Still, data remain conflictory probably because, although oxidative damage increases during reproduction, high systemic levels of oxidative stress might also constrain parental investment in reproduction. Here, we investigated variation in oxidative balance (i.e. oxidative damage and antioxidant defences) over the course of reproduction by comparing female laboratory mice rearing or not pups.

Results

A significant increase in oxidative damage over time was only observed in females caring for offspring, whereas antioxidant defences increased over time regardless of reproductive status. Interestingly, oxidative damage measured prior to reproduction was negatively associated with litter size at birth (constraint), whereas damage measured after reproduction was positively related to litter size at weaning (cost).

Conclusions

Globally, our correlative results and the review of literature describing the links between reproduction and oxidative stress underline the importance of timing/dynamics when studying and interpreting oxidative balance in relation to reproduction. Our study highlights the duality (constraint and cost) of oxidative stress in life-history trade-offs, thus supporting the theory that oxidative stress plays a key role in life-history evolution.
  相似文献   

16.

Background

Microcystins are waterborne environmental toxins that induce oxidative stress and cause injuries in the heart. On the other hand, many physiological processes, including antioxidant defense, are under precise control by the mammalian circadian clock.

Results

In the present study, we evaluated the effect of microcystin-LR (MC-LR) on the rhythmic expression patterns of circadian and antioxidant genes in rat cardiomyocytes using the serum shock technique. We found that a non-toxic dose (10 μm) of MC-LR decreased the amplitudes of rhythmic patterns of clock genes, while it increased the expression levels of antioxidant genes.

Conclusions

Our results indicate an influence of MC-LR on the circadian clock system and clock-controlled antioxidant genes, which will shed some light on the explanation of heart toxicity induced by MC-LR from the viewpoint of chronobiology.
  相似文献   

17.

Introduction

Three out of four people with diabetes will die of cardiovascular disease. However, the molecular mechanisms by which hyperglycemia promotes atherosclerosis, the major underlying cause of cardiovascular disease, are not clear.

Objectives

Three distinct models of hyperglycemia-associated accelerated atherosclerosis were used to identify commonly altered metabolites and pathways associated with the disease.

Methods

Normoglycemic apolipoprotein-E-deficient mice served as atherosclerotic control. Hyperglycemia was induced by multiple low-dose streptozotocin injections, or by introducing a point-mutation in one copy of insulin-2 gene. Glucosamine-supplemented mice, which experience accelerated atherosclerosis to a similar extent as hyperglycemia-induced models without alterations in glucose or insulin levels, were also included in the analysis. Untargeted plasma metabolomics were used to investigate hyperglycemia-associated accelerated atherosclerosis in three disease models. The effect of specific significantly altered metabolites on pro-atherogenic processes was investigated in cultured human vascular cells.

Results

Hyperglycemic and glucosamine-supplemented mice showed distinct metabolomic profiles compared to controls. Meta-analysis of three disease models revealed 62 similarly altered metabolite features (FDR-adjusted p?<?0.05). Identification of shared metabolites revealed alterations in glycerophospholipid and sphingolipid metabolism, and pro-atherogenic processes including inflammation and oxidative stress. Post-multivariate and pathway analyses indicated that the glycosphingolipid pathway is strongly associated with hyperglycemia-induced accelerated atherosclerosis in these atherogenic mouse models. Glycosphingolipids induced oxidative stress and inflammation in cultured human vascular cells.

Conclusion

Glycosphingolipids are strongly associated with hyperglycemia-induced accelerated atherosclerosis in three distinct models. They also promote pro-atherogenic processes in cultured human cells. These results suggest glycosphingolipid pathway may be a potential therapeutic target to block or slow atherogenesis in diabetic patients.
  相似文献   

18.

Introduction

Research in transfusion medicine is motivated by the desire to deliver the most-compatible and most-efficient blood product to the patient. It is now well accepted that ex vivo platelet concentrates (PCs) experience biochemical alterations and a functional decline known as storage lesions. Photochemical treatments have been introduced to secure PCs against pathogens but are reported to accelerate these lesions.

Objectives

The objective of this study was to investigate metabolic changes in stored PCs treated for pathogen inactivation with the INTERCEPT Blood system (Cerus, Concord, USA).

Methods

PCs either untreated (uPCs) or INTERCEPT-treated (iPCs) were sampled along the 7-day storage period. First, metabolites were extracted and analyzed using ultra-high pressure liquid chromatography—high resolution mass spectrometry followed by statistical analysis. Secondly, we investigated the role of urate, a major plasma antioxidant, in the platelet function using flow cytometry-based assays.

Results

We observed oxidative damages in stored iPCs compared to uPCs, in particular alteration of the purine and the glutathione metabolism. We showed diminution of antioxidant defenses following INTERCEPT treatment such as the conversion of urate to allantoin, only possible in humans under the action of reactive oxygen species (ROS). Functional assays on platelets in absence or in an excess of urate suggest a protective role of urate in PCs.

Conclusion

Our results indicate oxidative damages occurring at the metabolic level in stored iPCs. Understanding better the role of antioxidants such as urate in ex vivo PCs would definitively provide new insights to ameliorate the storage conditions and preserve the functionality of platelets.
  相似文献   

19.

Background

Erythropoiesis is regulated by a range of intrinsic and extrinsic factors, including different cytokines. Recently, the role of catecholamines has been highlighted in the development of erythroid cell lineages.

Objective

This study focuses on the biological links interconnecting erythroid development and the sympathetic nervous system. The emerging evidence that underscores the role of catecholamines in the regulation of erythropoietin and other erythropoiesis cytokines are thoroughly reviewed, in addition to elements such as iron and the leptin hormone that are involved in erythropoiesis.

Methods

Relevant English-language studies were identified and retrieved from the PubMed search engine (1981–2017) using the following keywords: “Erythropoiesis”, “Catecholamines”, “Nervous system”, and “Cytokines.”

Results

Chronic social stress alters and suppresses erythroid development. However, the physiological release of catecholamines is an additional stimulator of erythropoiesis in the setting of anemia. Therefore, the severity and timing of catecholamine secretion might distinctly regulate erythroid homeostasis.

Conclusion

Understanding the relationship of catecholamines with different elements of the erythroid islands will be essential to find the tightly regulated production of red blood cells (RBCs) in both chronic and physiological catecholamine activation.
  相似文献   

20.

Background

The possibility of dietary ginger to enhance oxidative stress resistance and to extend life span was studied on Drosophila melanogaster.

Methods

Oxidative stress was induced by a reducing agent dithiothreitol. Experimental groups of male D. melanogaster were cultured on media containing: 1) no additive; 2) dithiothreitol, added into the nutritional mixture to the final concentration of 10 mM; 3) 25 mg of ginger powder g–1 of the nutritional mixture; and 4) 10 mM of dithiothreitol and 25 mg of ginger powder g–1 of the nutritional mixture. The number of alive fruit flies was inspected daily, and mean life span was determined for each experimental group.

Results

The addition of dithiothreitol to D. melanogaster nutritional mixture was established to result in an increase in concentration of two markers of oxidative stress conditions (thiobarbituric acid reactive substances as products of lipid peroxidation and carbonylated proteins as products of protein oxidation) in fly tissues. It was followed by significant reduction of mean life span and maximum life span of the last 10% of flies. Plant preparation, being added simultaneously with dithiothreitol, significantly diminished the negative effects of this xenobiotic. In conditions of additional stress load induced by hydrogen peroxide or high temperature, survival of insects treated with dithiothreitol on the background of ginger powder was the highest.

Conclusions

Thus, the presented data give the evidence that ginger preparations can reduce oxidative stress outcomes and significantly increase the life expectancy of fruit flies in stress conditions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号