首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selection Intensity for Codon Bias   总被引:26,自引:7,他引:19       下载免费PDF全文
D. L. Hartl  E. N. Moriyama    S. A. Sawyer 《Genetics》1994,138(1):227-234
The patterns of nonrandom usage of synonymous codons (codon bias) in enteric bacteria were analyzed. Poisson random field (PRF) theory was used to derive the expected distribution of frequencies of nucleotides differing from the ancestral state at aligned sites in a set of DNA sequences. This distribution was applied to synonymous nucleotide polymorphisms and amino acid polymorphisms in the gnd and putP genes of Escherichia coli. For the gnd gene, the average intensity of selection against disfavored synonymous codons was estimated as approximately 7.3 X 10(-9); this value is significantly smaller than the estimated selection intensity against selectively disfavored amino acids in observed polymorphisms (2.0 X 10(-8)), but it is approximately of the same order of magnitude. The selection coefficients for optimal synonymous codons estimated from PRF theory were consistent with independent estimates based on codon usage for threonine and glycine. Across 118 genes in E. coli and Salmonella typhimurium, the distribution of estimated selection coefficients, expressed as multiples of the effective population size, has a mean and standard deviation of 0.5 +/- 0.4. No significant differences were found in the degree of codon bias between conserved positions and replacement positions, suggesting that translational misincorporation is not an important selective constraint among synonymous polymorphic codons in enteric bacteria. However, across the first 100 codons of the genes, conserved amino acids with identical codons have significantly greater codon bias than of either synonymous or nonidentical codons, suggesting that there are unique selective constraints, perhaps including mRNA secondary structures, in this part of the coding region.  相似文献   

2.
Codon usage bias (CUB) results from the complex interplay between translational selection and mutational biases. Current methods for CUB analysis apply heuristics to integrate both components, limiting the depth and scope of CUB analysis as a technique to probe into the evolution and optimization of protein-coding genes. Here we introduce a self-consistent CUB index (scnRCA) that incorporates implicit correction for mutational biases, facilitating exploration of the translational selection component of CUB. We validate this technique using gene expression data and we apply it to a detailed analysis of CUB in the Pseudomonadales. Our results illustrate how the selective enrichment of specific codons among highly expressed genes is preserved in the context of genome-wide shifts in codon frequencies, and how the balance between mutational and translational biases leads to varying definitions of codon optimality. We extend this analysis to other moderate and fast growing bacteria and we provide unified support for the hypothesis that C- and A-ending codons of two-box amino acids, and the U-ending codons of four-box amino acids, are systematically enriched among highly expressed genes across bacteria. The use of an unbiased estimator of CUB allows us to report for the first time that the signature of translational selection is strongly conserved in the Pseudomonadales in spite of drastic changes in genome composition, and extends well beyond the core set of highly optimized genes in each genome. We generalize these results to other moderate and fast growing bacteria, hinting at selection for a universal pattern of gene expression that is conserved and detectable in conserved patterns of codon usage bias.  相似文献   

3.
In many unicellular organisms, invertebrates, and plants, synonymous codon usage biases result from a coadaptation between codon usage and tRNAs abundance to optimize the efficiency of protein synthesis. However, it remains unclear whether natural selection acts at the level of the speed or the accuracy of mRNAs translation. Here we show that codon usage can improve the fidelity of protein synthesis in multicellular species. As predicted by the model of selection for translational accuracy, we find that the frequency of codons optimal for translation is significantly higher at codons encoding for conserved amino acids than at codons encoding for nonconserved amino acids in 548 genes compared between Caenorhabditis elegans and Homo sapiens. Although this model predicts that codon bias correlates positively with gene length, a negative correlation between codon bias and gene length has been observed in eukaryotes. This suggests that selection for fidelity of protein synthesis is not the main factor responsible for codon biases. The relationship between codon bias and gene length remains unexplained. Exploring the differences in gene expression process in eukaryotes and prokaryotes should provide new insights to understand this key question of codon usage. Received: 18 June 2000 / Accepted: 10 November 2000  相似文献   

4.
Chromohalobacter salexigens, a Gammaproteobacterium belonging to the family Halomonadaceae, shows a broad salinity range for growth. In order to reveal the factors influencing architecture of protein coding genes in C. salexigens, pattern of synonymous codon usage bias has been investigated. Overall codon usage analysis of the microorganism revealed that C and G ending codons are predominantly used in all the genes which are indicative of mutational bias. Multivariate statistical analysis showed that the genes are separated along the first major explanatory axis according to their expression levels and their genomic GC content at the synonymous third positions of the codons. Both NC plot and correspondence analysis on Relative Synonymous Codon Usage (RSCU) indicates that the variation in codon usage among the genes may be due to mutational bias at the DNA level and natural selection acting at the level of mRNA translation. Gene length and the hydrophobicity of the encoded protein also influence the codon usage variation of genes to some extent. A comparison of the relative synonymous codon usage between 10% each of highly and lowly expressed genes determines 23 optimal codons, which are statistically over represented in the former group of genes and may provide useful information for salt-stressed gene prediction and gene-transformation. Furthermore, genes for regulatory functions; mobile and extrachromosomal element functions; and cell envelope are observed to be highly expressed. The study could provide insight into the gene expression response of halophilic bacteria and facilitate establishment of effective strategies to develop salt-tolerant crops of agronomic value.  相似文献   

5.
In bacteria, synonymous codon usage can be considerably affected by base composition at neighboring sites. Such context-dependent biases may be caused by either selection against specific nucleotide motifs or context-dependent mutation biases. Here we consider the evolutionary conservation of context-dependent codon bias across 11 completely sequenced bacterial genomes. In particular, we focus on two contextual biases previously identified in Escherichia coli; the avoidance of out-of-frame stop codons and AGG motifs. By identifying homologues of E. coli genes, we also investigate the effect of gene expression level in Haemophilus influenzae and Mycoplasma genitalium. We find that while context-dependent codon biases are widespread in bacteria, few are conserved across all species considered. Avoidance of out-of-frame stop codons does not apply to all stop codons or amino acids in E. coli, does not hold for different species, does not increase with gene expression level, and is not relaxed in Mycoplasma spp., in which the canonical stop codon, TGA, is recognized as tryptophan. Avoidance of AGG motifs shows some evolutionary conservation and increases with gene expression level in E. coli, suggestive of the action of selection, but the cause of the bias differs between species. These results demonstrate that strong context-dependent forces, both selective and mutational, operate on synonymous codon usage but that these differ considerably between genomes. Received: 6 May 1999 / Accepted: 29 October 1999  相似文献   

6.
Synonymous codons are unevenly distributed among genes, a phenomenon termed codon usage bias. Understanding the patterns of codon bias and the forces shaping them is a major step towards elucidating the adaptive advantage codon choice can confer at the level of individual genes and organisms. Here, we perform a large-scale analysis to assess codon usage bias pattern of pyrimidine-ending codons in highly expressed genes in prokaryotes. We find a bias pattern linked to the degeneracy of the encoded amino acid. Specifically, we show that codon-pairs that encode two- and three-fold degenerate amino acids are biased towards the C-ending codon while codons encoding four-fold degenerate amino acids are biased towards the U-ending codon. This codon usage pattern is widespread in prokaryotes, and its strength is correlated with translational selection both within and between organisms. We show that this bias is associated with an improved correspondence with the tRNA pool, avoidance of mis-incorporation errors during translation and moderate stability of codon-anticodon interaction, all consistent with more efficient translation.  相似文献   

7.
It has often been suggested that differential usage of codons recognized by rare tRNA species, i.e. "rare codons", represents an evolutionary strategy to modulate gene expression. In particular, regulatory genes are reported to have an extraordinarily high frequency of rare codons. From E. coli we have compiled codon usage data for highly expressed genes, moderately/lowly expressed genes, and regulatory genes. We have identified a clear and general trend in codon usage bias, from the very high bias seen in very highly expressed genes and attributed to selection, to a rather low bias in other genes which seems to be more influenced by mutation than by selection. There is no clear tendency for an increased frequency of rare codons in the regulatory genes, compared to a large group of other moderately/lowly expressed genes with low codon bias. From this, as well as a consideration of evolutionary rates of regulatory genes, and of experimental data on translation rates, we conclude that the pattern of synonymous codon usage in regulatory genes reflects primarily the relaxation of natural selection.  相似文献   

8.
《Genomics》2020,112(2):1319-1329
NKX-2.5 gene is responsible for cardiac development and its targeted disruption apprehends cardiac development at the linear heart tube stage. Bioinformatic analysis was employed to investigate the codon usage pattern and dN/dS of mammalian NKX-2.5 gene. The relative synonymous codon usage analysis revealed variation in codon usage and two synonymous codons namely ATA (Ile) and GTA (Val) were absent in NKX-2.5 gene across selected mammalian species suggesting that these two codons were possibly selected against during evolution. Parity rule 2 analysis of two and four fold amino acids showed CT bias whereas six-fold amino acids revealed GA bias. Neutrality analysis suggests that selection played a prominent role while mutation had a minor role. The dN/dS analysis suggests synonymous substitution played a significant role and it negatively correlated with p-distance of the gene. Purifying natural selection played a dominant role in the genetic evolution of NKX-2.5 gene in mammals.  相似文献   

9.
In this study codon usage bias of all experimentally known genes of Lactococcus lactis has been analyzed. Since Lactococcus lactis is an AT rich organism, it is expected to occur A and/or T at the third position of codons and detailed analysis of overall codon usage data indicates that A and/or T ending codons are predominant in this organism. However, multivariate statistical analyses based both on codon count and on relative synonymous codon usage (RSCU) detect a large number of genes, which are supposed to be highly expressed are clustered at one end of the first major axis, while majority of the putatively lowly expressed genes are clustered at the other end of the first major axis. It was observed that in the highly expressed genes C and T ending codons are significantly higher than the lowly expressed genes and also it was observed that C ending codons are predominant in the duets of highly expressed genes, whereas the T endings codons are abundant in the quartets. Abundance of C and T ending codons in the highly expressed genes suggest that, besides, compositional biases, translational selection are also operating in shaping the codon usage variation among the genes in this organism as observed in other compositionally skewed organisms. The second major axis generated by correspondence analysis on simple codon counts differentiates the genes into two distinct groups according to their hydrophobicity values, but the same analysis computed with relative synonymous codon usage values could not discriminate the genes according to the hydropathy values. This suggests that amino acid composition exerts constraints on codon usage in this organism. On the other hand the second major axis produced by correspondence analysis on RSCU values differentiates the genes into two groups according to the synonymous codon usage for cysteine residues (rarest amino acids in this organism), which is nothing but a artifactual effect induced by the RSCU values. Other factors such as length of the genes and the positions of the genes in the leading and lagging strand of replication have practically no influence in the codon usage variation among the genes in this organism.  相似文献   

10.
Palidwor GA  Perkins TJ  Xia X 《PloS one》2010,5(10):e13431

Background

In spite of extensive research on the effect of mutation and selection on codon usage, a general model of codon usage bias due to mutational bias has been lacking. Because most amino acids allow synonymous GC content changing substitutions in the third codon position, the overall GC bias of a genome or genomic region is highly correlated with GC3, a measure of third position GC content. For individual amino acids as well, G/C ending codons usage generally increases with increasing GC bias and decreases with increasing AT bias. Arginine and leucine, amino acids that allow GC-changing synonymous substitutions in the first and third codon positions, have codons which may be expected to show different usage patterns.

Principal Findings

In analyzing codon usage bias in hundreds of prokaryotic and plant genomes and in human genes, we find that two G-ending codons, AGG (arginine) and TTG (leucine), unlike all other G/C-ending codons, show overall usage that decreases with increasing GC bias, contrary to the usual expectation that G/C-ending codon usage should increase with increasing genomic GC bias. Moreover, the usage of some codons appears nonlinear, even nonmonotone, as a function of GC bias. To explain these observations, we propose a continuous-time Markov chain model of GC-biased synonymous substitution. This model correctly predicts the qualitative usage patterns of all codons, including nonlinear codon usage in isoleucine, arginine and leucine. The model accounts for 72%, 64% and 52% of the observed variability of codon usage in prokaryotes, plants and human respectively. When codons are grouped based on common GC content, 87%, 80% and 68% of the variation in usage is explained for prokaryotes, plants and human respectively.

Conclusions

The model clarifies the sometimes-counterintuitive effects that GC mutational bias can have on codon usage, quantifies the influence of GC mutational bias and provides a natural null model relative to which other influences on codon bias may be measured.  相似文献   

11.
Highly expressed plastid genes display codon adaptation, which is defined as a bias toward a set of codons which are complementary to abundant tRNAs. This type of adaptation is similar to what is observed in highly expressed Escherichia coli genes and is probably the result of selection to increase translation efficiency. In the current work, the codon adaptation of plastid genes is studied with regard to three specific features that have been observed in E. coli and which may influence translation efficiency. These features are (1) a relatively low codon adaptation at the 5′ end of highly expressed genes, (2) an influence of neighboring codons on codon usage at a particular site (codon context), and (3) a correlation between the level of codon adaptation of a gene and its amino acid content. All three features are found in plastid genes. First, highly expressed plastid genes have a noticeable decrease in codon adaptation over the first 10–20 codons. Second, for the twofold degenerate NNY codon groups, highly expressed genes have an overall bias toward the NNC codon, but this is not observed when the 3′ neighboring base is a G. At these sites highly expressed genes are biased toward NNT instead of NNC. Third, plastid genes that have higher codon adaptations also tend to have an increased usage of amino acids with a high G + C content at the first two codon positions and GNN codons in particular. The correlation between codon adaptation and amino acid content exists separately for both cytosolic and membrane proteins and is not related to any obvious functional property. It is suggested that at certain sites selection discriminates between nonsynonymous codons based on translational, not functional, differences, with the result that the amino acid sequence of highly expressed proteins is partially influenced by selection for increased translation efficiency. Received: 21 July 1999 / Accepted: 5 November 1999  相似文献   

12.
Analysis of synonymous codon usage pattern in the genome of a thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1 using multivariate statistical analysis revealed a single major explanatory axis accounting for codon usage variation in the organism. This axis is correlated with the GC content at third base of synonymous codons (GC3s) in correspondence analysis taking T. elongatus genes. A negative correlation was observed between effective number of codons i.e. Nc and GC3s. Results suggested a mutational bias as the major factor in shaping codon usage in this cyanobacterium. In comparison to the lowly expressed genes, highly expressed genes of this organism possess significantly higher proportion of pyrimidine-ending codons suggesting that besides, mutational bias, translational selection also influenced codon usage variation in T. elongatus. Correspondence analysis of relative synonymous codon usage (RSCU) with A, T, G, C at third positions (A3s, T3s, G3s, C3s, respectively) also supported this fact and expression levels of genes and gene length also influenced codon usage. A role of translational accuracy was identified in dictating the codon usage variation of this genome. Results indicated that although mutational bias is the major factor in shaping codon usage in T. elongatus, factors like translational selection, translational accuracy and gene expression level also influenced codon usage variation.  相似文献   

13.
The genetic code is degenerate—most amino acids can be encoded by from two to as many as six different codons. The synonymous codons are not used with equal frequency: not only are some codons favored over others, but also their usage can vary significantly from species to species and between different genes in the same organism. Known causes of codon bias include differences in mutation rates as well as selection pressure related to the expression level of a gene, but the standard analysis methods can account for only a fraction of the observed codon usage variation. We here introduce an explicit model of codon usage bias, inspired by statistical physics. Combining this model with a maximum likelihood approach, we are able to clearly identify different sources of bias in various genomes. We have applied the algorithm to Saccharomyces cerevisiae as well as 325 prokaryote genomes, and in most cases our model explains essentially all observed variance.  相似文献   

14.
A O Urrutia  L D Hurst 《Genetics》2001,159(3):1191-1199
In numerous species, from bacteria to Drosophila, evidence suggests that selection acts even on synonymous codon usage: codon bias is greater in more abundantly expressed genes, the rate of synonymous evolution is lower in genes with greater codon bias, and there is consistency between genes in the same species in which codons are preferred. In contrast, in mammals, while nonequal use of alternative codons is observed, the bias is attributed to the background variance in nucleotide concentrations, reflected in the similar nucleotide composition of flanking noncoding and exonic third sites. However, a systematic examination of the covariants of codon usage controlling for background nucleotide content has yet to be performed. Here we present a new method to measure codon bias that corrects for background nucleotide content and apply this to 2396 human genes. Nearly all (99%) exhibit a higher amount of codon bias than expected by chance. The patterns associated with selectively driven codon bias are weakly recovered: Broadly expressed genes have a higher level of bias than do tissue-specific genes, the bias is higher for genes with lower rates of synonymous substitutions, and certain codons are repeatedly preferred. However, while these patterns are suggestive, the first two patterns appear to be methodological artifacts. The last pattern reflects in part biases in usage of nucleotide pairs. We conclude that we find no evidence for selection on codon usage in humans.  相似文献   

15.
It is generally believed that the effect of translational selection on codon usage bias is related to the number of transfer RNA genes in bacteria, which is more with respect to the high expression genes than the whole genome. Keeping this in the background, we analyzed codon usage bias with respect to asparagine, isoleucine, phenylalanine, and tyrosine amino acids. Analysis was done in seventeen bacteria with the available gene expression data and information about the tRNA gene number. In most of the bacteria, it was observed that codon usage bias and tRNA gene number were not in agreement, which was unexpected. We extended the study further to 199 bacteria, limiting to the codon usage bias in the two highly expressed genes rpoB and rpoC which encode the RNA polymerase subunits β and β′, respectively. In concordance with the result in the high expression genes, codon usage bias in rpoB and rpoC genes was also found to not be in agreement with tRNA gene number in many of these bacteria. Our study indicates that tRNA gene numbers may not be the sole determining factor for translational selection of codon usage bias in bacterial genomes.  相似文献   

16.
Positive correlation between gene expression and synonymous codon usage bias is well documented in the literature. However, in the present study of Vibrio cholerae genome, we have identified a group of genes having unusually high codon usage bias despite being low potential expressivity. Our results suggest that codon usage in lowly expressed genes might also be selected on to preferably use non-optimal codons to maintain a low cellular concentration of the proteins that they encode. This would predict that lowly expressed genes are also biased in codon usage, but in a way that is opposite to the bias of highly expressed genes.  相似文献   

17.
18.
Prochlorococcus species are the first example of free-living bacteria with reduced genome. Codon and amino acid usages bias of Prochlorococcus marinus MED4 was investigated using all protein coding genes having length greater than or equal to 100 amino acids. Correspondence analysis on relative synonymous codon usage (RSCU) values shows that there is no such influence of translational selection in shaping the codon usage variation among the genes in this organism. However, amino acid usages were markedly different between the highly and lowly expressed genes in this organism and in particular, GC rich amino acids were found to occur significantly higher in highly expressed genes than the lowly expressed genes. Comparative analysis of the homologous genes of Synechococcus sp. WH8102 and Prochlorococcus marinus MED4 shows that amino acids conservation in highly expressed genes is significantly higher than lowly expressed genes. Based on our results we concluded that conservation of GC rich amino acids in the highly expressed genes to its ancestor is the major source of variation in amino acid usages in the organism.  相似文献   

19.
Among a sample of 39 Geodia cydonium (Demospongiae, Porifera) genes, with an average G + C content of 51.2%, extensive structural heterogeneity and considerable variations in synonymous codon usage were found. The G + C content of coding sequences and G + C content at silent codon positions (GC3S) varied from 42.4 to 59.2% and from 35.6 to 76.5%, respectively. Correspondence analysis of 39 genes revealed that putative highly expressed genes preferentially use a limited subset of codons, which were therefore defined as preferred codons in G. cydonium . A total of 22 preferred codons for 18 amino acids with synonyms in codons were identified and they all (with one exception) end with C or G. Among these codons there are also C- and G-ending codons which were previously identified as codons optimal for translation in a variety of eukaryotes, including metazoans and plants. The bias in synonymous codon usage in putative highly expressed G. cydonium genes is moderate, indicating that these genes are not shaped under strong natural selection. We postulate that the preference for C- and G-ending codons was already established in the ancestor of all Metazoa, including also sponges. This ancestor most probably also had a G + C rich genome. The selection toward C- and G-ending codons has been largely conserved throughout eukaryote evolution; exceptions are, for example, mammals for which strong mutational biases caused switches from that rule.  相似文献   

20.

Background  

It is widely acknowledged that synonymous codons are used unevenly among genes in a genome. In organisms under translational selection, genes encoding highly expressed proteins are enriched with specific codons. This phenomenon, termed codon usage bias, is common to many organisms and has been recognized as influencing cellular fitness. This suggests that the global extent of codon usage bias of an organism might be associated with its phenotypic traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号