首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The PALB2 gene, also known as FANCN, forms a bond and co-localizes with BRCA2 in DNA repair. Germline mutations in PALB2 have been identified in approximately 1% of familial breast cancer and 3–4% of familial pancreatic cancer. The goal of this study was to determine the prevalence of PALB2 mutations in a population of BRCA1/BRCA2 negative breast cancer patients selected from either a personal or family history of pancreatic cancer.

Methods

132 non-BRCA1/BRCA2 breast/ovarian cancer families with at least one pancreatic cancer case were included in the study. PALB2 mutational analysis was performed by direct sequencing of all coding exons and intron/exon boundaries, as well as multiplex ligation-dependent probe amplification.

Results

Two PALB2 truncating mutations, the c.1653T>A (p.Tyr551Stop) previously reported, and c.3362del (p.Gly1121ValfsX3) which is a novel frameshift mutation, were identified. Moreover, several PALB2 variants were detected; some of them were predicted as pathological by bioinformatic analysis. Considering truncating mutations, the prevalence rate of our population of BRCA1/2-negative breast cancer patients with pancreatic cancer is 1.5%.

Conclusions

The prevalence rate of PALB2 mutations in non-BRCA1/BRCA2 breast/ovarian cancer families, selected from either a personal or family pancreatic cancer history, is similar to that previously described for unselected breast/ovarian cancer families. Future research directed towards identifying other gene(s) involved in the development of breast/pancreatic cancer families is required.  相似文献   

2.
PALB2 was first identified as a partner of BRCA2 that mediates its recruitment to sites of DNA damage. PALB2 was subsequently found as a tumor suppressor gene. Inherited heterozygosity for this gene is associated with an increased risk of cancer of the breast and other sites. Additionally, biallelic mutation of PALB2 is linked to Fanconi anemia, which also has an increased risk of developing malignant disease. Recent work has identified numerous interactions of PALB2, suggesting that it functions in a network of proteins encoded by tumor suppressors. Notably, many of these tumor suppressors are related to the cellular response to DNA damage. The recruitment of PALB2 to DNA double-strand breaks at the head of this network is via a ubiquitin-dependent signaling pathway that involves the RAP80, Abraxas and BRCA1 tumor suppressors. Next, PALB2 interacts with BRCA2, which is a tumor suppressor, and with the RAD51 recombinase. These interactions promote DNA repair by homologous recombination (HR). More recently, PALB2 has been found to bind the RAD51 paralog, RAD51C, as well as the translesion polymerase pol η, both of which are tumor suppressors with functions in HR. Further, an interaction with MRG15, which is related to chromatin regulation, may facilitate DNA repair in damaged chromatin. Finally, PALB2 interacts with KEAP1, a regulator of the response to oxidative stress. The PALB2 network appears to mediate the maintenance of genome stability, may explain the association of many of the corresponding genes with similar spectra of tumors, and could present novel therapeutic opportunities.  相似文献   

3.

Background

The partner and localizer of breast cancer 2 (PALB2) is responsible for facilitating BRCA2-mediated DNA repair by serving as a bridging molecule, acting as the physical and functional link between the breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) proteins. Truncating mutations in the PALB2 gene are rare but are thought to be associated with increased risks of developing breast cancer in various populations.

Methods

We evaluated the contribution of PALB2 germline mutations in 122 Asian women with breast cancer, all of whom had significant family history of breast and other cancers. Further screening for nine PALB2 mutations was conducted in 874 Malaysian and 532 Singaporean breast cancer patients, and in 1342 unaffected Malaysian and 541 unaffected Singaporean women.

Results

By analyzing the entire coding region of PALB2, we found two novel truncating mutations and ten missense mutations in families tested negative for BRCA1/2-mutations. One additional novel truncating PALB2 mutation was identified in one patient through genotyping analysis. Our results indicate a low prevalence of deleterious PALB2 mutations and a specific mutation profile within the Malaysian and Singaporean populations.  相似文献   

4.
This paper presents a mutation as well as a genotype–phenotype analysis of the GJB2 and GJB6 genes in 476 samples from non-syndromic unrelated Argentinean deaf patients (104 familial and 372 sporadic cases). Most of them were of prelingual onset (82 %) and 27 % were cochlear implanted. Variation of sequences was detected in 171 of the 474 patients (36 %). Overall, 43 different sequence variations were identified in GJB2 and GJB6. Four of them are reported for the first time in GJB2: c.233dupG, p.Ala78Ser, p.Val190Asp and p.Cys211Tyr. Mutations in GJB6 were detected in 3 % of patients [nine del(GJB6-D13S1830) and three del(GJB6-D13S1854)]. Of the 43 different variations identified in GJB2, 6 were polymorphisms and of the others, 10 (27 %) were truncating and 27 (73 %) were nontruncating. Patients with two truncating mutations had significantly worse hearing impairment than all other groups. Moderate phenotypes were observed in a group of patients carrying biallelic mutations (23 %). This work shows the high prevalence of GJB2 mutations in the Argentinean population and presents an analysis of moderate phenotypes in our cohort.  相似文献   

5.
The breast cancer 2, early onset protein (BRCA2) is central to the repair of DNA damage by homologous recombination. BRCA2 recruits the recombinase RAD51 to sites of damage, regulates its assembly into nucleoprotein filaments and thereby promotes homologous recombination. Localization of BRCA2 to nuclear foci requires its association with the partner and localizer of BRCA2 (PALB2), mutations in which are associated with cancer predisposition, as well as subtype N of Fanconi anaemia. We have determined the structure of the PALB2 carboxy‐terminal β‐propeller domain in complex with a BRCA2 peptide. The structure shows the molecular determinants of this important protein–protein interaction and explains the effects of both cancer‐associated truncating mutants in PALB2 and missense mutations in the amino‐terminal region of BRCA2.  相似文献   

6.
Triple-negative breast cancer (TNBC) is an aggressive form of breast carcinoma with a poor prognosis. Recent evidence suggests that some patients with TNBC harbour germ-line mutations in DNA repair genes which may render their tumours susceptible to novel therapies such as treatment with PARP inhibitors. In the present study, we have investigated a hospital-based series of 40 German patients with TNBC for the presence of germ-line mutations in BRCA1, BRCA2, PALB2, and BRD7 genes. Microfluidic array PCR and next-generation sequencing was used for BRCA1 and BRCA2 analysis while conventional high-resolution melting and Sanger sequencing was applied to study the coding regions of PALB2 and BRD7, respectively. Truncating mutations in BRCA1 were found in six patients, and truncating mutations in BRCA2 and PALB2 were detected in one patient each, whereas no truncating mutation was identified in BRD7. One patient was a double heterozygote for the PALB2 mutation, c.758insT, and a BRCA1 mutation, c.927delA. Our results confirm in a hospital-based setting that a substantial proportion of German TNBC patients (17.5%) harbour germ-line mutations in genes involved in homology-directed DNA repair, with a preponderance of BRCA1 mutations. Triple-negative breast cancer should be considered as an additional criterion for future genetic counselling and diagnostic sequencing.  相似文献   

7.
Mutations in the MCPH1 gene cause primary microcephaly associated with a unique cellular phenotype of misregulated chromosome condensation. The encoded protein contains three BRCT domains, and accumulating data show that MCPH1 is involved in the DNA damage response. However, most of this evidence has been generated by experiments using RNA interference (RNAi) and cells from non-human model organisms. Here, we demonstrate that patient-derived cell lines display a proficient G2/M checkpoint following ionizing irradiation (IR) despite homozygous truncating mutations in MCPH1. Moreover, chromosomal breakage rates and the relocation to DNA repair foci of several proteins functioning putatively in an MCPH1-dependent manner are normal in these cells. However, the MCPH1-deficient cells exhibit a slight delay in re-entering mitosis and delayed resolution of γH2AX foci following IR. Analysis of chromosome condensation behavior following IR suggests that these latter observations may be related to hypercondensation of the chromatin in cells with MCPH1 mutations. Our results indicate that the DNA damage response in human cells with truncating MCPH1 mutations differs significantly from the damage responses in cells of certain model organisms and in cells depleted of MCPH1 by RNAi. These subtle effects of human MCPH1 deficiency on the cellular DNA damage response may explain the absence of cancer predisposition in patients with biallelic MCPH1 mutations.Key words: chromosome condensation, DNA damage, G2/M checkpoint, ionizing radiation, PCC syndrome, primary microcephaly, repair foci  相似文献   

8.
Embryonic stem cells (ESCs) are the progenitors of all adult cells; consequently, genomic abnormalities in them may be catastrophic for the developing organism. ESCs are characterized by high proliferation activity and do not stop in checkpoints upon DNA-damage executing only G2/M delay after DNA damage. ATM and ATR kinases are key sensors of double-strand DNA breaks and activate downstream signaling pathways involving checkpoints, DNA repair, and apoptosis. We examined activation of ATM/ATR signaling in human ESCs and revealed that irradiation induced ATM, ATR, and Chk2 phosphorylation, and γH2AX foci formation and their colocalization with 53BP1 and Rad51 proteins. Interestingly, human ESCs exhibit noninduced γH2AX foci colocalized with Rad51 and marking single-strand DNA breaks. Next, we revealed the significant contribution of ATM, Chk1, and Chk2 kinases to G2/M block after irradiation and ATM-dependent activation (phosphorylation) of p53 in human ESCs. However, p53 activation and subsequent induction of p21 Waf1 gene expression after DNA damage do not result in p21Waf1 protein accumulation due to its proteasomal degradation.  相似文献   

9.
Fanconi anemia (FA) is a cancer susceptibility disorder characterized by chromosomal instability and hypersensitivity to DNA cross-linking agents. So far 11 complementation groups have been identified, from which only FA-D1/BRCA2 and FA-J are defective downstream of the central FANCD2 protein as cells from these groups are capable of monoubiquitinating FANCD2. In this study we show that cells derived from patients from the new complementation groups, FA-I, FA-J and FA-L are all proficient in DNA damage induced Rad51 foci formation, making the cells from FA-D1/BRCA2 patients that are defective in this process the sole exception. Although FA-B patient HSC230 was previously reported to also have biallelic BRCA2 mutations, we found normal Rad51 foci formation in cells from this patient, consistent with the recent identification of an X-linked gene being mutated in four unrelated FA-B patients. Thus, our data show that none of the FA proteins, except BRCA2, are required to sequester Rad51 into nuclear foci. Since cells from the FA-D1 and FA-J patient groups are both able to monoubiquitinate FANCD2, the "Rad51 foci phenotype" provides a convenient assay to distinguish between these two groups. Our results suggest that FANCJ and FANCD1/BRCA2 are part of the integrated FANC/BRCA DNA damage response pathway or, alternatively, that they represent sub-pathways in which only FANCD1/BRCA2 is directly connected to the process of homologous recombination.  相似文献   

10.
11.
The previously described Chinese hamster cell mutant V-C8 that is defective in Brca2 shows a very complex phenotype, including increased sensitivity towards a wide variety of DNA damaging agents, chromosomal instability, abnormal centrosomes and impaired formation of Rad51 foci in response to DNA damage. Here, we demonstrate that V-C8 cells display biallelic nonsense mutations in Brca2, one in exon 15 and the other in exon 16, both resulting in truncated Brca2 proteins. We generated several independent mitomycin C (MMC)-resistant clones from V-C8 cells that had acquired an additional mutation leading to the restoration of the open reading frame of one of the Brca2 alleles. In two of these revertants, V-C8-Rev 1 and V-C8-Rev 6, the reversions lead to the wild-type Brca2 sequence. The V-C8 revertants did not gain the entire wild-type phenotype and still show a 2.5-fold increased sensitivity to mitomycin C (MMC), higher levels of spontaneous and MMC-induced chromosomal aberrations, as well as abnormal centrosomes when compared to wild-type cells. Our results suggest that Brca2 heterozygosity in hamster cells primarily gives rise to sensitivity to DNA cross-linking agents, especially chromosomal instability, a feature that might also be displayed in BRCA2 heterozygous mutation carriers.  相似文献   

12.
Homologous recombination (HR), although an important DNA repair mechanism, is dangerous to the cell if improperly regulated. The Srs2 “anti-recombinase” restricts HR by disassembling the Rad51 nucleoprotein filament, an intermediate preceding the exchange of homologous DNA strands. Here, we cytologically characterize Srs2 function in vivo and describe a novel mechanism for regulating the initiation of HR. We find that Srs2 is recruited separately to replication and repair centers and identify the genetic requirements for recruitment. In the absence of Srs2 activity, Rad51 foci accumulate, and surprisingly, can form in the absence of Rad52 mediation. However, these Rad51 foci do not represent repair-proficient filaments, as determined by recombination assays. Antagonistic roles for Rad52 and Srs2 in Rad51 filament formation are also observed in vitro. Furthermore, we provide evidence that Srs2 removes Rad51 indiscriminately from DNA, while the Rad52 protein coordinates appropriate filament reformation. This constant breakdown and rebuilding of filaments may act as a stringent quality control mechanism during HR.  相似文献   

13.
Antibodies against human Rad51 protein were used to examine the distribution of Rad51 on meiotic chromatin in mouse spermatocytes and oocytes as well as chicken oocytes during sequential stages of meiosis. We observed the following dynamic changes in distribution of Rad51 during meiosis: (1) in early leptotene nuclei there are multiple apparently randomly distributed, foci that by late leptonema become organized into tracks of foci. (2) These foci persist into zygonema, but most foci are now localized on Rad51-positive axes that correspond to lateral elements of the synaptonemal complex. As homologs synapse foci from homologous axes fuse. The distribution and involvement of Rad51 foci as contact points between homologs suggest that they may be components to early recombination nodules. (3) As pachynema progresses the number of foci drops dramatically; the temporal occurrence (mice) and physical and numerical distribution of foci on axes (chickens) suggest that they may be a component of late recombination nodules. (4) In early pachynema there are numerous Rad51 foci on the single axis of the X (mouse spermatocytes) or the Z (chiken oocytes) chromosomes that neither pair, nor recombine. (5) In late pachynema in mouse spermatocytes, but not oocytes, the Rad51 signal is preferentially enhanced at both ends of all the bivalents. As bivalents in spermatocytes, but not oocytes, begin to desynapse at diplonema they are often held together at these Rad51-positive termini. These observations parallel observations that recombination rates are exceptionally high near chromosome ends in male but not female eutherian mammals. (6) From diakinesis through metaphase I, Rad51 protein is detected as low-intensity fluorescent doublets that localize with CREST-specific antigens (kinetochores), suggesting that Rad51 participates, at least as a structural component of the materials involved, in sister kinetochore cohesiveness. Finally, the changes in Rad51 distribution during meiosis do not appear to be species specific, but intrinsic to the meiotic process.  相似文献   

14.
Rad51 is a key protein in homologous recombination performing homology search and DNA strand invasion. After DNA strand exchange Rad51 protein is stuck on the double-stranded heteroduplex DNA product of DNA strand invasion. This is a problem, because DNA polymerase requires access to the invading 3′-OH end to initiate DNA synthesis. Here we show that, the Saccharomyces cerevisiae dsDNA motor protein Rad54 solves this problem by dissociating yeast Rad51 protein bound to the heteroduplex DNA after DNA strand invasion. The reaction required species-specific interaction between both proteins and the ATPase activity of Rad54 protein. This mechanism rationalizes the in vivo requirement of Rad54 protein for the turnover of Rad51 foci and explains the observed dependence of the transition from homologous pairing to DNA synthesis on Rad54 protein in vegetative and meiotic yeast cells.  相似文献   

15.
《Cellular signalling》2014,26(9):1825-1836
The protein kinase Rad53 is a key regulator of the DNA damage checkpoint in budding yeast. Its human ortholog, CHEK2, is mutated in familial breast cancer and mediates apoptosis in response to genotoxic stress. Autophosphorylation of Rad53 at residue Thr354 located in the kinase activation segment is essential for Rad53 activation. In this study, we assessed the requirement of kinase domain dimerization and the exchange of its activation segment during the Rad53 activation process. We solved the crystal structure of Rad53 in its dimeric form and found that disruption of the observed head-to-tail, face-to-face dimer structure decreased Rad53 autophosphorylation on Thr354 in vitro and impaired Rad53 function in vivo. Moreover, we provide critical functional evidence that Rad53 trans-autophosphorylation may involve the interkinase domain exchange of helix αEF via an invariant salt bridge. These findings suggest a mechanism of autophosphorylation that may be broadly applicable to other protein kinases.  相似文献   

16.
Despite increased awareness and diagnostic facilities, 70–80% of the haemophilia A (HA) patients still remain undiagnosed in India. Very little data is available on prevalent mutations in HA from this country. We report fifty mutations in seventy one Indian HA patients, of which twenty were novel. Ten novel missense mutations [p.Leu11Pro (p.Leu-8Pro), p.Tyr155Ser (p.Tyr136Ser), p.Ile405Thr (p.Ile386Thr), p.Gly582Val (p.Gly563Val) p.Thr696Ile (p.Thr677Ile), p.Tyr737Cys (p.Tyr718Cys), p.Pro1999Arg (p.Pro1980Arg), p.Ser2082Thr (p.Ser2063Thr), p.Leu2197Trp (p.Leu2178Trp), p.Asp2317Glu (p.Asp2298Glu)] two nonsense [p.Lys396* (p.Lys377*), p.Ser2205* (p.Ser2186*)], one insertion [p.Glu1268_Asp1269ins (p.Glu1249_Asp1250)] and seven deletions [p.Leu882del (p.Leu863del), p.Met701del (p.Met682del), p.Leu1223del (p.Leu1204del), p.Trp1961_Tyr1962del (p.Trp1942_Tyr1943del) p.Glu1988del (p.Glu1969del), p.His1841del (p.His1822del), p.Ser2205del (p.Ser2186del)] were identified. Double mutations (p.Asp2317Glu; p.Thr696Ile) were observed in a moderate HA case. Mutations [p. Arg612Cys (p.Arg593Cys), p.Arg2326Gln (p.Arg2307Gln)] known to be predisposing to inhibitors to factor VIII (FVIII) were identified in two patients. 4.6% of the cases were found to be cross reacting material positive (CRM+ve). A wide heterogeneity in the nature of mutations was seen in the present study which has been successfully used for carrier detection and antenatal diagnosis in 10 families affected with severe to moderate HA.  相似文献   

17.
Rad51 immunocytology in rat and mouse spermatocytes and oocytes   总被引:10,自引:0,他引:10  
On the assumption that Rad51 protein plays a role in early meiotic chromosomal events, we examine the location and time of appearance of immuno-reactive Rad51 protein in meiotic prophase chromosomes. The Rad51 foci in mouse spermatocytes appear after the emergence of, and attached to, short chromosomal core segments that we visualize with Cor1-specific antibody. These foci increase in number to about 250 per nucleus at the time when core formation is extensive. The numbers are higher in mouse oocytes and lower in rat spermatocytes, possibly correlating with recombination rates in those cases. In the male mouse, foci decrease in number to approximately 100 while chromosome synapsis is in progress. When synapsis is completed, the numbers of autosomal foci decline to near 0 while the X chromosome retains about 15 foci throughout this time. This stage coincides with the appearance of testis-specific histone H1t at mid- to late pachytene. Electron microscopy reveals that at first Rad51 immunogold-labeled 100 nm nodules are associated with single cores, and that they come to lie between the chromosome cores during synapsis. It appears that these nodules may be the homologs of the Rad51-positive early nodules that are well documented in plants. The reciprocal recombination-correlated late nodules appear after the Rad51 foci are no longer detectable. The absence of Rad51 foci in the chromatin loops suggests that in wild-type mice Rad51/DNA filaments are restricted to DNA at the cores/synaptonemal complexes. The expected association of Rad51 protein with Rad52 could not be verified immunocytologically. Received: 12 December 1996; in revised form: 3 April 1997 / Accepted: 4 April 1997  相似文献   

18.
It has been shown that the key homologous recombination protein Rad51accumulates in DNA damage‐induced nuclear foci that are attached to the nuclear matrix. In the present communication we attempted to find whether Rad51 contains a functional domain responsible for nuclear matrix binding. By alignments of the sequences encoding nuclear matrix targeting signals of human nuclear matrix binding proteins with the whole length human Rad51sequence a putative nuclear matrix targeting signal was identified. To prove that it is responsible for the nuclear matrix association of Rad51 18 base pairs encoding a cluster of hydrophobic amino acids in the human Rad51 Flag‐tagged gene were deleted. The formation of damage‐induced Rad51 foci and their association with the nuclear matrix were monitored in HeLa cells transfected with the wild‐type and the mutated Rad51gene after treatment with mitomycin C. The results showed that while the wild‐type protein formed Rad51 foci attached to the nuclear matrix, the mutated Rad51 failed to form DNA damage‐induced nuclear foci. The loss of foci formation activity of the mutated protein was not due to impaired ability to bind double‐stranded DNA in an ATP‐dependant way in vitro and to bind chromatin in vivo. These data suggest that the assembly of Rad51 into nuclear foci is assisted by association with the nuclear matrix, which may support the spatial organization of the process of repair by homologous recombination. J. Cell. Physiol. 219: 202–208, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
PALB2 links BRCA1 and BRCA2 in homologous recombinational repair of DNA double strand breaks (DSBs). Mono-allelic mutations in PALB2 increase the risk of breast, pancreatic, and other cancers, and biallelic mutations cause Fanconi anemia (FA). Like Brca1 and Brca2, systemic knock-out of Palb2 in mice results in embryonic lethality. In this study, we generated a hypomorphic Palb2 allele expressing a mutant PALB2 protein unable to bind BRCA1. Consistent with an FA-like phenotype, cells from the mutant mice showed hypersensitivity and chromosomal breakage when treated with mitomycin C, a DNA interstrand crosslinker. Moreover, mutant males showed reduced fertility due to impaired meiosis and increased apoptosis in germ cells. Interestingly, mutant meiocytes showed a significant defect in sex chromosome synapsis, which likely contributed to the germ cell loss and fertility defect. Our results underscore the in vivo importance of the PALB2-BRCA1 complex formation in DSB repair and male meiosis.  相似文献   

20.
A rare hereditary disorder, Fanconi anemia (FA), is caused by mutations in an array of genes, which interact in a common FA pathway/network. These genes encode components of the FA "core" complex, a key factor FancD2, the familial breast cancer suppressor BRCA2/FancD1, and Brip1/FancJ helicase. Although BRCA2 is known to play a pivotal role in homologous recombination repair by regulating Rad51 recombinase, the precise functional relationship between BRCA2 and the other FA genes is unclear. Here we show that BRCA2-dependent chromatin loading of Rad51 after mitomycin C treatment was not compromised by disruption of FANCC or FANCD2. Rad51 and FancD2 form colocalizing subnuclear foci independently of each other. Furthermore, we created a conditional BRCA2 truncating mutation lacking the C-terminal conserved domain (CTD) (brca2DeltaCTD), and disrupted the FANCC gene in this background. The fancc/brca2DeltaCTD double mutant revealed an epistatic relationship between FANCC and BRCA2 CTD in terms of x-ray sensitivity. In contrast, levels of cisplatin sensitivity and mitomycin C-induced chromosomal aberrations were increased in fancc/brca2DeltaCTD cells relative to either single mutant. Taken together, these results indicate that FA proteins work together with BRCA2/Rad51-mediated homologous recombination in double strand break repair, whereas the FA pathway plays a role that is independent of the CTD of BRCA2 in interstrand cross-link repair. These results provide insights into the functional interplay between the classical FA pathway and BRCA2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号