首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
A conformational transition of normal cellular prion protein (PrPC) to its pathogenic form (PrPSc) is believed to be a central event in the transmission of the devastating neurological diseases known as spongiform encephalopathies. The common methionine/valine polymorphism at residue 129 in the PrP influences disease susceptibility and phenotype. We report here seven crystal structures of human PrP variants: three of wild‐type (WT) PrP containing V129, and four of the familial variants D178N and F198S, containing either M129 or V129. Comparison of these structures with each other and with previously published WT PrP structures containing M129 revealed that only WT PrPs were found to crystallize as domain‐swapped dimers or closed monomers; the four mutant PrPs crystallized as non‐swapped dimers. Three of the four mutant PrPs aligned to form intermolecular β‐sheets. Several regions of structural variability were identified, and analysis of their conformations provides an explanation for the structural features, which can influence the formation and conformation of intermolecular β‐sheets involving the M/V129 polymorphic residue.  相似文献   

2.
Amyloid‐β peptide (Aβ), especially its oligomeric form, is believed to play an important role in the pathogenesis of Alzheimer's disease (AD). To this end, the binding of Aβ oligomer to cellular prion protein (PrPC) plays an important role in synaptic dysfunction in a mouse model of AD. Here, we have screened for compounds that inhibit Aβ oligomer binding to PrPC from medicines already used clinically (Mizushima Approved Medicine Library 1), and identified dextran sulfate sodium (DSS) as a candidate. In a cell‐free assay, DSS inhibited Aβ oligomer binding to PrPC but not to ephrin receptor B2, another endogenous receptor for Aβ oligomers, suggesting that the drug's action is specific to the binding of Aβ oligomer to PrPC. Dextran on the other hand did not affect this binding. DSS also suppressed Aβ oligomer binding to cells expressing PrPC but not to control cells. Furthermore, while incubation of mouse hippocampal slices with Aβ oligomers inhibited the induction of long‐term potentiation, simultaneous treatment with DSS restored the long‐term potentiation. As DSS has already been approved for use in patients with hypertriglyceridemia, and its safety in humans has been confirmed, we propose further analysis of this drug as a candidate for AD treatment.

  相似文献   


3.
Prions are suspected as pathogen of the fatal transmissible spongiform encephalopathies. Strategies to access homogenous prion protein (PrP) are required to fully comprehend the molecular mechanism of prion diseases. However, the polypeptide fragments from PrP show a high tendency to form aggregates, which is a gigantic obstacle of protein synthesis and purification. In this study, murine prion sequence 90 to 230 that is the core three‐dimensional structure domain was constructed from three segments murine PrP (mPrP)(90–177), mPrP(178–212), and mPrP(213–230) by combining protein expression, chemical synthesis and chemical ligation. The protein sequence 90 to 177 was obtained from expression and finally converted into the polypeptide hydrazide by chemical activation of a cysteine in the tail. The other two polypeptide fragments of the C‐terminal were obtained by chemical synthesis, which utilized the strategies of isopeptide and pseudoproline building blocks to complete the synthesis of such difficult sequences. The three segments were finally assembled by sequentially using native chemical ligation. This strategy will allow more straightforward access to homogeneously modified PrP variants. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
5.
The 173–195 segment corresponding to the helix 2 of the globular PrP domain is a good candidate to be one of the several ‘spots’ of intrinsic structural flexibility, which might induce local destabilization and concur to protein transformation, leading to aggregation‐prone conformations. Here, we report CD and NMR studies on the α2‐helix‐derived peptide of maximal length (hPrP[180–195]) that is able to exhibit a regular structure different from the prevalently random arrangement of other α2‐helix‐derived peptides. This peptide, which has previously been shown to be affected by buffer composition via the ion charge density dependence typical of Hofmeister effects, corresponds to the C‐terminal sequence of the PrPC full‐length α2‐helix and includes the highly conserved threonine‐rich 188–195 segment. At neutral pH, its conformation is dominated by β‐type contributions, which only very strong environmental modifications are able to modify. On TFE addition, an increase of α‐helical content can be observed, but a fully helical conformation is only obtained in neat TFE. However, linking of the 173–179 segment, as occurring in wild‐type and mutant peptides corresponding to the full‐length α2‐helix, perturbs these intrinsic structural propensities in a manner that depends on whether the environment is water or TFE. Overall, these results confirm that the 180–195 parental region in hPrPC makes a strong contribution to the chameleon conformational behavior of the segment corresponding to the full‐length α2‐helix, and could play a role in determining structural rearrangements of the entire globular domain. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
On consideration that intrinsic structural weakness could affect the segment spanning the α2‐helical residues 173–195 of the PrP, we have investigated the conformational stabilities of some synthetic Ala‐scanned analogs of the peptide derived from the 180–195 C‐terminal sequence, using a novel approach whose theoretical basis originates from protein thermodynamics. Even though a quantitative comparison among peptides could not be assessed to rank them according to the effect caused by single amino acid substitution, as a general trend, all peptides invariably showed an appreciable preference for an α‐type organization, consistently with the fact that the wild‐type sequence is organized as an α‐helix in the native protein. Moreover, the substitution of whatever single amino acid in the wild‐type sequence reduced the gap between the α‐ and the β‐propensity, invariably enhancing the latter, but in any case this gap was larger than that evaluated for the full‐length α2‐helix‐derived peptide. It appears that the low β‐conformation propensity of the 180–195 region depends on the simultaneous presence of all of the Ala‐scanned residues, indirectly confirming that the N‐terminal 173–179 segment could play a major role in determining the chameleon conformational behavior of the entire 173–195 region in the PrP. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Examples of homomeric β‐helices and β‐barrels have recently emerged. Here we generalize the theory for the shear number in β‐barrels to encompass β‐helices and homomeric structures. We introduce the concept of the “β‐strip,” the set of parallel or antiparallel neighboring strands, from which the whole helix can be generated giving it n‐fold rotational symmetry. In this context, the shear number is interpreted as the sum around the helix of the fixed register shift between neighboring identical β‐strips. Using this approach, we have derived relationships between helical width, pitch, angle between strand direction and helical axis, mass per length, register shift, and number of strands. The validity and unifying power of the method is demonstrated with known structures including α‐hemolysin, T4 phage spike, cylindrin, and the HET‐s(218‐289) prion. From reported dimensions measured by X‐ray fiber diffraction on amyloid fibrils, the relationships can be used to predict the register shift and the number of strands within amyloid protofilaments. This was used to construct models of transthyretin and Alzheimer β(40) amyloid protofilaments that comprise a single strip of in‐register β‐strands folded into a “β‐strip helix.” Results suggest both stabilization of an individual β‐strip helix and growth by addition of further β‐strip helices can involve the same pair of sequence segments associating with β‐sheet hydrogen bonding at the same register shift. This process would be aided by a repeat sequence. Hence, understanding how the register shift (as the distance between repeat sequences) relates to helical dimensions will be useful for nanotube design.  相似文献   

8.
According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre ‘synthetic'' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20 000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved.  相似文献   

9.
The polymorphic β‐amyloid lesions present in individuals with Alzheimer's disease are collectively known as cerebral β‐amyloidosis. Amyloid precursor protein (APP) transgenic mouse models similarly develop β‐amyloid depositions that differ in morphology, binding of amyloid conformation‐sensitive dyes, and Aβ40/Aβ42 peptide ratio. To determine the nature of such β‐amyloid morphotypes, β‐amyloid‐containing brain extracts from either aged APP23 brains or aged APPPS1 brains were intracerebrally injected into the hippocampus of young APP23 or APPPS1 transgenic mice. APPPS1 brain extract injected into young APP23 mice induced β‐amyloid deposition with the morphological, conformational, and Aβ40/Aβ42 ratio characteristics of β‐amyloid deposits in aged APPPS1 mice, whereas APP23 brain extract injected into young APP23 mice induced β‐amyloid deposits with the characteristics of β‐amyloid deposits in aged APP23 mice. Injecting the two extracts into the APPPS1 host revealed a similar difference between the induced β‐amyloid deposits, although less prominent, and the induced deposits were similar to the β‐amyloid deposits found in aged APPPS1 hosts. These results indicate that the molecular composition and conformation of aggregated Aβ in APP transgenic mice can be maintained by seeded conversion.  相似文献   

10.
Cellular prion protein (PrPC ) is widely expressed and displays a variety of well‐described functions in the central nervous system (CNS ). Mutations of the PRNP gene are known to promote genetic human spongiform encephalopathies, but the components of gain‐ or loss‐of‐function mutations to PrPC remain a matter for debate. Among the proteins described to interact with PrPC is Stress‐inducible protein 1 (STI 1), a co‐chaperonin that is secreted from astrocytes and triggers neuroprotection and neuritogenesis through its interaction with PrPC . In this work, we evaluated the impact of different PrPC pathogenic point mutations on signaling pathways induced by the STI 1‐PrPC interaction. We found that some of the pathogenic mutations evaluated herein induce partial or total disruption of neuritogenesis and neuroprotection mediated by mitogen‐activated protein kinase (MAPK )/extracellular signal‐regulated kinases 1 and 2 (ERK 1/2) and protein kinase A (PKA ) signaling triggered by STI 1‐PrPC engagement. A pathogenic mutant PrPC that lacked both neuroprotection and neuritogenesis activities fail to promote negative dominance upon wild‐type PrPC . Also, a STI 1‐α7‐nicotinic acetylcholine receptor‐dependent cellular signaling was present in a PrPC mutant that maintained both neuroprotection and neuritogenesis activities similar to what has been previously observed by wild‐type PrPC . These results point to a loss‐of‐function mechanism underlying the pathogenicity of PrPC mutations.

  相似文献   

11.
朊蛋白的细胞生物学研究   总被引:1,自引:0,他引:1  
朊蛋白病是人和牛羊等哺乳动物所患的致命性的神经系统变性疾病,它是由机体内正常的朊蛋白改变构象后所引起的疾病。本综述对朊蛋白在细胞生物学领域的认知和理解进行了归纳总结,阐述了正常和异常朊蛋白的翻译、表达、定位、裂解、转化等一系列过程,是对疾病本质的有益探索。  相似文献   

12.
Conversion of normal prion protein (PrPC) to the pathogenic PrPSc conformer is central to prion diseases such as Creutzfeldt–Jakob disease and scrapie; however, the detailed mechanism of this conversion remains obscure. To investigate how the N-terminal polybasic region of PrP (NPR) influences the PrPC-to-PrPSc conversion, we analyzed two PrP mutants: ΔN6 (deletion of all six amino acids in NPR) and Met4-1 (replacement of four positively charged amino acids in NPR with methionine). We found that ΔN6 and Met4-1 differentially impacted the binding of recombinant PrP (recPrP) to the negatively charged phospholipid 1-palmitoyl-2-oleoylphosphatidylglycerol, a nonprotein cofactor that facilitates PrP conversion. Both mutant recPrPs were able to form recombinant prion (recPrPSc) in vitro, but the convertibility was greatly reduced, with ΔN6 displaying the lowest convertibility. Prion infection assays in mammalian RK13 cells expressing WT or NPR-mutant PrPs confirmed these differences in convertibility, indicating that the NPR affects the conversion of both bacterially expressed recPrP and post-translationally modified PrP in eukaryotic cells. We also found that both WT and mutant recPrPSc conformers caused prion disease in WT mice with a 100% attack rate, but the incubation times and neuropathological changes caused by two recPrPSc mutants were significantly different from each other and from that of WT recPrPSc. Together, our results support that the NPR greatly influences PrPC-to-PrPSc conversion, but it is not essential for the generation of PrPSc. Moreover, the significant differences between ΔN6 and Met4-1 suggest that not only charge but also the identity of amino acids in NPR is important to PrP conversion.  相似文献   

13.
Dysregulated metabolism and consequent extracellular accumulation of amyloid‐β (Aβ) peptides in the brain underlie the pathogenesis of Alzheimer's disease. Extracellular Aβ in the brain parenchyma is mainly secreted from the pre‐synaptic terminals of neuronal cells in a synaptic activity‐dependent manner. The p24 family member p24α2 reportedly attenuates Aβ generation by inhibiting γ‐secretase processing of amyloid precursor protein; however, the pattern of expression and localization of p24α2 in the brain remains unknown. We performed immunohistochemical staining and subcellular fractionation for p24α2 in the mouse brain. Immunostaining showed that p24α2 is broadly distributed in the gray matter of the central nervous system and is predominantly localized to synapses. Subcellular fractionation revealed prominent localization of p24α2 in the pre‐synaptic terminals. Immunoisolation of synaptic vesicles (SV) indicated that p24α2 is condensed at active zone‐docked SV. During development, p24α2 expression is highest in the post‐natal period and gradually decreases with age. We also confirmed that amyloid precursor protein and γ‐secretase components are localized at active zone‐docked SV. Our results suggest a novel functional role for p24α2 in the regulation of synaptic transmission and synaptogenesis, and provide evidence for the participation of p24α2 in the regulation of Aβ generation and secretion in the brain.

  相似文献   


14.
Prion and Alzheimer diseases are fatal neurodegenerative diseases caused by misfolding and aggregation of the cellular prion protein (PrPC) and the β-amyloid peptide, respectively. Soluble oligomeric species rather than large aggregates are now believed to be neurotoxic. PrPC undergoes three proteolytic cleavages as part of its natural life cycle, α-cleavage, β-cleavage, and ectodomain shedding. Recent evidences demonstrate that the resulting secreted PrPC molecules might represent natural inhibitors against soluble toxic species. In this mini-review, we summarize recent observations suggesting the potential benefit of using PrPC-derived molecules as therapeutic agents in prion and Alzheimer diseases.  相似文献   

15.
16.
A wealth of evidence supports the view that conformational change of the prion protein, PrPC, into a pathogenic isoform, PrPSc, is the hallmark of sporadic, infectious, and inherited forms of prion disease. Although the central role played by PrPSc in the pathogenesis of prion disease is appreciated, the cellular mechanisms that recognize PrPSc and modulate its production, clearance, and neural toxicity have not been elucidated. To address these questions, we used a tissue-specific expression system to express wild-type and disease-associated PrP molecules heterologously in Drosophila melanogaster. Our results indicate that Drosophila brain possesses a specific and saturable mechanism that suppresses the accumulation of PG14, a disease-associated insertional PrP mutant. We also found that wild-type PrP molecules are maintained in a detergent-soluble conformation throughout life in Drosophila brain neurons, whereas they become detergent-insoluble in retinal cells as flies age. PG14 protein expression in Drosophila eye did not cause retinal pathology. Our work reveals the presence of mechanisms in neurons that specifically counterbalance the production of misfolded PrP conformations, and provides an opportunity to study these processes in a model organism amenable to genetic analysis.  相似文献   

17.
18.
mAbs T1 and T2 were established by immunizing PrP gene ablated mice with recombinant MoPrP of residues 121–231. Both mAbs were cross‐reactive with PrP from hamster, sheep, cattle and deer. A linear epitope of mAb T1 was identified at residues 137–143 of MoPrP and buried in PrPC expressed on the cell surface. mAb T1 showed no inhibitory effect on accumulation of PrPSc in cultured scrapie‐infected neuroblastoma (ScN2a) cells. In contrast, mAb T2 recognized a discontinuous epitope ranged on, or structured by, residues 132–217 and this epitope was exposed on the cell surface PrPC. mAb T2 showed an excellent inhibitory effect on PrPSc accumulation in vitro at a 50% inhibitory concentration of 0.02 μg/ml (0.14 nM). The scFv form of mAb T2 (scFv T2) was secreted in neuroblastoma (N2a58) cell cultures by transfection through eukaryotic secretion vector. Coculturing of ScN2a cells with scFv T2‐producing N2a58 cells induced a clear inhibitory effect on PrPSc accumulation, suggesting that scFv T2 could potentially be an immunotherapeutic tool for prion diseases by inhibition of PrPSc accumulation.  相似文献   

19.
Aberrant metal binding by prion protein in human prion disease   总被引:9,自引:0,他引:9  
Human prion diseases are characterized by the conversion of the normal prion protein (PrP(C)) into a pathogenic isomer (PrP(Sc)). Distinct PrP(Sc) conformers are associated with different subtypes of prion diseases. PrP(C) binds copper and has antioxidation activity. Changes in metal-ion occupancy can lead to significant decline of the antioxidation activity and changes in conformation of the protein. We studied the trace element status of brains from patients with sporadic Creutzfeldt-Jakob disease (sCJD). We found a decrease of up to 50% of copper and an increase in manganese of approximately 10-fold in the brain tissues from sCJD subjects. We have also studied the metal occupancy of PrP in sCJD patients. We observed striking elevation of manganese and, to a lesser extent, of zinc accompanied by significant reduction of copper bound to purified PrP in all sCJD variants, determined by the PrP genotype and PrP(Sc) type, combined. Both zinc and manganese were undetectable in PrP(C) preparations from controls. Copper and manganese changes were pronounced in sCJD subjects homozygous for methionine at codon 129 and carrying PrP(Sc) type-1. Anti-oxidation activity of purified PrP was dramatically reduced by up to 85% in the sCJD variants, and correlated with increased in oxidative stress markers in sCJD brains. These results suggest that altered metal-ion occupancy of PrP plays a pivotal role in the pathogenesis of prion diseases. Since the metal changes differed in each sCJD variants, they may contribute to the diversity of PrP(Sc) and disease phenotype in sCJD. Finally, this study also presented two potential approaches in the diagnosis of CJD; the significant increase in brain manganese makes it potentially detectable by MRI, and the binding of manganese by PrP in sCJD might represent a novel diagnostic marker.  相似文献   

20.
The 19‐transmembrane, multisubunit γ‐secretase complex generates the amyloid β‐peptide (Aβ) of Alzheimer's disease (AD) by an unusual intramembrane proteolysis of the β‐amyloid precursor protein. The complex, which similarly processes many other type 1 transmembrane substrates, is composed of presenilin, Aph1, nicastrin, and presenilin enhancer (Pen‐2), all of which are necessary for proper complex maturation and enzymatic activity. Obtaining a high‐resolution atomic structure of the intact complex would greatly aid the rational design of compounds to modulate activity but is a very difficult task. A complementary method is to generate structures for each individual subunit to allow one to build a model of the entire complex. Here, we describe a method by which recombinant human Pen‐2 can be purified from bacteria to > 95% purity at milligram quantities per liter, utilizing a maltose binding protein tag to both increase solubility and facilitate purification. Expressing the same construct in mammalian cells, we show that the large N‐terminal maltose binding protein tag on Pen‐2 still permits incorporation into the complex and subsequent presenilin‐1 endoproteolysis, nicastrin glycosylation and proteolytic activity. These new methods provide valuable tools to study the structure and function of Pen‐2 and the γ‐secretase complex.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号