首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The proliferation of human bone marrow mesenchymal stem cells (MSCs) employing xeno-free materials not containing fetal calf serum (FCS) and porcine trypsin was investigated for the regenerative medicine of cartilage using MSCs. Four sequential subcultivations of MSCs using a medium containing 10% FCS and recombinant trypsin (TrypLESelect™) resulted in cell growth comparable to that with porcine trypsin. There was no apparent difference in the cell growth and morphology between two kinds of MSC stored in liquid nitrogen using 10% FCS plus DMSO or serum-free TC protector™. MSCs were isolated from human bone marrow cells, stored in liquid nitrogen, and sequentially subcultivated four times employing conventional materials that included FCS, porcine trypsin, and DMSO, or xeno-free materials that included serum-free medium (MesenCult-XF™), TC protector™ and TrypLESelect™. Cells in the culture using the xeno-free materials maintained typical fibroblast-like morphology and grew more rapidly than the cells in the culture using the conventional materials, while the cell surface markers of MSCs (CD90 and CD166) were well maintained in both cultures. Chondrogenic pellet cultures were carried out using these subcultivated cells and a medium containing TGFβ3 and IGF1. The pellet culture using cells grown with the xeno-free materials showed an apparently higher gene expression of aggrecan, a chondrocyte marker, than the pellet culture using cells grown with the conventional materials. Consequently, MSCs that are isolated, stored, and grown using the xeno-free materials including the serum-free medium (MesenCult-XF™), TC protector™, and recombinant trypsin (TrypLESelect™) might be applicable for regenerative medicine of cartilage.  相似文献   

2.
Embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs) have been studied for years as primary cell sources for regenerative biology and medicine. MSCs have been derived from cell and tissue sources, such as bone marrow (BM), and more recently from ESCs. This study investigated MSCs derived from BM, H1- and H9-ESC lines in terms of morphology, surface marker and growth factor receptor expression, proliferative capability, modulation of immune cell growth and multipotency, in order to evaluate ESC-MSCs as a cell source for potential regenerative applications. The results showed that ESC-MSCs exhibited spindle-shaped morphology similar to BM-MSCs but of various sizes, and flow cytometric immunophenotyping revealed expression of characteristic MSC surface markers on all tested cell lines except H9-derived MSCs. Differences in growth factor receptor expression were also shown between cell lines. In addition, ESC-MSCs showed greater capabilities for cell proliferation, and suppression of leukocyte growth compared to BM-MSCs. Using standard protocols, induction of ESC-MSC differentiation along the adipogenic, osteogenic, or chondrogenic lineages was less effective compared to that of BM-MSCs. By adding bone morphogenetic protein 7 (BMP7) into transforming growth factor beta 1 (TGFβ1)-supplemented induction medium, chondrogenesis of ESC-MSCs was significantly enhanced. Our findings suggest that ESC-MSCs and BM-MSCs show differences in their surface marker profiles and the capacities of proliferation, immunomodulation, and most importantly multi-lineage differentiation. Using modified chondrogenic medium with BMP7 and TGFβ1, H1-MSCs can be effectively induced as BM-MSCs for chondrogenesis.  相似文献   

3.
The infiltration of adipocytes in osteoporotic patients' bone marrow suggests an important regulatory function of bone marrow fat on the development of aged bone. Therefore, we have examined the effects of adipocytes derived from bone mesenchymal stem cell (MSC) on osteoblast differentiation using two different co-culture modes (direct mode and indirect mode). Alkaline phosphatase (ALP)-positive areas and mineralized areas of MSC-derived osteoblasts decrease similarly in the two co-culture modes as the amount of MSC-derived adipocytes increases, suggesting that the crosstalk between adipocytes and osteoblasts may be mainly through secretory factors in the medium. To further understand the molecular mechanisms, both mRNA and protein expressions in osteoblasts in the lower layer of the indirect mode were analyzed, leading to identification of 12 differential genes/proteins. Among them, S100A6 and calreticulin are possibly related to bone formation. S100A6 was down-regulated and calreticulin was up-regulated as MSC-derived adipocytes increased. Similarly, differential expression of these proteins was also observed in bone tissue slides from young (1-month-old) and old (6-month-old) mice. The expression level of β-catenin in osteoblasts of bone tissues was lower in 6-month-old mice compared to 1-month-old mice. Total TGF-β analyzed with antibody-based protein microarray and active TGF-β analyzed with ELISA in the co-cultured cell medium increased consistently as the amount of adipocytes increased. Taken together, our results suggest that MSC-derived adipocytes may regulate osteoblast differentiation in the aged bone through TGF-β-mediated canonical Wnt signaling.  相似文献   

4.
构建人IL-34真核表达载体并将其转染到人骨髓间充质干细胞,观察高表达IL-34的骨髓间充质干细胞对THP-1细胞的影响。PCR扩增IL-34 DNA,并将其克隆到真核表达载体pIRES2-EGFP;将构建成功的重组体转染到骨髓间充质干细胞,Western blotting和ELISA分析IL-34在细胞中的表达;用高表达IL-34的骨髓间充质干细胞培养上清液来培养THP-1细胞,Real-time PCR分析THP-1细胞中IL-10和TNFα的表达变化。经双酶切和测序鉴定,成功构建了pIRES2-EGFP-IL-34重组体;转染至骨髓间充质干细胞的IL-34可以促进THP-1细胞表达IL-10和TNFα。结果表明,骨髓间充质干细胞表达分泌的IL-34对THP-1有调节作用。  相似文献   

5.
6.
Malondialdehyde(MDA)is a well known inducer of carbonyl stress in a variety of human cells,however,its effects on human bone marrow mesenchymal stem cells(hMSCs)have not been documented.In this study,the effects of MDA concentration on the growth rate and proliferation of hMSCs in vitro were assessed.Under high concentrations of MDA,the cell count was decreased and the population doubling time(PDT)was lengthened.Flow cytometry(FCM)demonstrated that MDA triggered cells to undergo apoptosis.in parallel with the findings in MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide]assay which showed that it can also impair cellular viability.Surprisingly,FCM also determined that the percentage of hMSCs in G2/M- and S-phases also increased in a dose-dependent manner with respect to MDA concentration.These results strongly suggest that even though hMSCs were severely impaired by high concentrations of MDA,they were still able to send signals that resulted in accelerated cellular proliferation process.This study provided important insights on how carbonyl stress affects cell cycle and proliferation of hMSCs.  相似文献   

7.
The presence within bone marrow of a population of mesenchymal stem cells (MSCs) able to differentiate into a number of different mesenchymal tissues, including bone and cartilage, was first suggested by Friedenstein nearly 40 years ago. Since then MSCs have been demonstrated in a variety of fetal and adult tissues, including bone marrow, fetal blood and liver, cord blood, amniotic fluid and, in some circumstances, in adult peripheral blood. MSCs from all of these sources can be extensively expanded in vitro and when cultured under specific permissive conditions retain their ability to differentiate into multiple lineages including bone, cartilage, fat, muscle, nerve, glial and stromal cells. There has been great interest in these cells both because of their value as a model for studying the molecular basis of differentiation and because of their therapeutic potential for tissue repair and immune modulation. However, MSCs are a rare population in these tissues. Here we tried to identify cells with MSC-like potency in human placenta. We isolated adherent cells from trypsin-digested term placentas and examined these cells for morphology, surface markers, and differentiation potential and found that they expressed several stem cell markers. They also showed endothelial and neurogenic differentiation potentials under appropriate conditions. We suggest that placenta-derived cells have multilineage differentiation potential similar to MSCs in terms of morphology and cell-surface antigen expression. The placenta may prove to be a useful source of MSCs.  相似文献   

8.
Strontium ranelate (SrR) was an effective anti-osteoporotic drug to increase bone formation and decrease bone resorption. However, reports about the effect of SR on osteoblastic and adipocytic differentiation from bone marrow mesenchymal stem cells (BMMSCs) are limited. The purpose of this study is to evaluate whether SrR affects the ability of BMMSCs to differentiate into osteoblasts or adipocytes. Rat BMMSCs were identified by flow cytometry and exposed to SR (0.1 and 1.0mMSr(2+)) under osteogenic or adipogenic medium for 1 and 2weeks. The proliferation and differentiation of BMMSCs were analyzed by MTT, alkaline phosphatase (ALP), Oil red O staining, quantitative real-time RT-PCR and Western blot assays. SrR significantly inhibited the proliferation, increased osteoblastic but decreased adipocytic differentiation of rat BMMSCs dose-dependently. In osteogenic medium, SrR increased the expression of ALP, the mRNA levels of Cbfa1/Runx2, bone sialoprotein, and osteocalcin by RT-PCR, and the protein levels of Cbfa1/Runx2 by Western blot. In adipogenic medium, SrR decreased the mRNA levels of PPARγ2, adipocyte lipid-binding protein 2 (aP2/ALBP), and lipoprotein lipase (LPL) by RT-PCR, and the protein expression of PPARγ in Western blot analysis. These results indicated that the effects of SrR to promote osteoblastic but inhibit adipocytic differentiation of BMMSCs might contribute to its effect on osteoporosis treatment.  相似文献   

9.
The regeneration potential of mesenchymal stem cells (MSCs) diminishes with advanced age and this diminished potential is associated with changes in cellular functions. This study compared MSCs isolated from the bone marrow of rhesus monkeys (rBMSCs) in three age groups: young (< 5 years), middle (8-10 years), and old (> 12 years). The effects of aging on stem cell properties and indicators of stem cell fitness such as proliferation, differentiation, circadian rhythms, stress response proteins, miRNA expression, and global histone modifications in rBMSCs were analyzed. rBMSCs demonstrated decreased capacities for proliferation and differentiation as a function of age. The production of heat shock protein 70 (HSP70) and heat shock factor 1 (HSF1) were also reduced with increasing age. The level of a core circadian protein, Rev-erb α, was significantly increased in rBMSCs from old animals. Furthermore, analysis of miRNA expression profiles revealed an up-regulation of mir-766 and mir-558 and a down-regulation of mir-let-7f, mir-125b, mir-222, mir-199-3p, mir-23a, and mir-221 in old rBMSCs compare to young rBMSCs. However, there were no significant age-related changes in the global histone modification profiles of the four histone core proteins: H2A, H2B, H3, and H4 on rBMSCs. These changes represent novel insights into the aging process and could have implications regarding the potential for autologous stem cells therapy in older patients.  相似文献   

10.
Human mesenchymal stem cells (MSCs), with capacity to differentiate into adipocytes, osteoblasts and chondrocytes, offer potential for the development of novel treatments. A critical question in MSCs biology is whether this cell population possesses a relatively uniform differentiation capability or is comprised of distinct subsets of progenitors committed to differentiate in particular pathways. To quantify the changes during growth of MSCs, we analyzed the mesenchymal phenotype and differentiation ability using a multi-marker PCR with six primer sets specific for CD73, CD90, CD105, CD166, CD45 and β-actin allowing a gel-based differential detection of the PCR products. To determine degree of variability of MSCs populations in terms of proliferation, cell proliferation assays were performed on expanded MSCs up to the sixth passage. At each passage, the osteogenic and adipogenic differentiation potentials of MSCs were verified by culture in inductive media. RT-PCR and cytochemical analysis revealed that, despite the loss of multipotentiality during expansion, certain markers remain expressed, indicating that these markers are unlikely to be reflective of the MSC’s true ‘stem cell’ nature. Our results suggest that decrease in the expression of MSCs specific markers correlates with down-regulation of proliferation ability and differentiation efficiency of MSCs.  相似文献   

11.
Shen JL  Huang YZ  Xu SX  Zheng PH  Yin WJ  Cen J  Gong LZ 《Cryobiology》2012,64(3):167-175

Objective

To evaluate long-term cryopreserved human bone marrow cells (BMCs) as a source of functional mesenchymal stem cells (MSCs).

Methods

Samples of human BMCs that were cryopreserved for 23–25 years (n = 20) were thawed to obtain an initial culture and a primary culture (P0) that was propagated through five passages (P1–P5) to obtain MSCs. Freshly collected human bone marrow samples (n = 20) were used as controls for comparison of efficiency of recovery and growth characteristics of MSCs. P3 cultures were tested for their capacity to differentiate into osteoblasts, adipocytes, and neuronal cells. Appropriate staining, immunohistochemical and biochemical methods were employed to ascertain cell type identities at different stages of culturing.

Results

In the initial culture, the cell adherence rate of the cryopreserved cells was significantly lower than that of controls (19.7% vs. 38.2%, p < 0.05) while the relative rate of recovery of MSCs was only 48.5 ± 8.6% in P0. At the end of P3, fibroblast-like cells accounted for about 95% of cells in both cryopreserved and control groups (p > 0.05). These cells were positive for essential MSC surface molecules (CD90, CD105, CD166, CD44, CD29, CD71, CD73) and negative for haematopoietic and endothelial cell markers (CD45, CD34, HLA-DR). The cell growth and cell cycle patterns were similar for both groups. MSCs at P3 from both groups had similar capacities to differentiate in vitro into osteoblasts, adipocytes, and neuronal cells.

Conclusion

Using the methods described here, long-term (23–25 years) cryopreserved human BMCs can be successfully cultivated to obtain MSCs that have good differentiation capabilities.  相似文献   

12.
AcSDKP抑制体外培养条件下人骨髓间充质干细胞的增殖   总被引:3,自引:0,他引:3  
Dai G  Huang C  Li Y  Pi YH  Wang BH 《生理学报》2006,58(2):110-115
N-乙酰基-丝氨酰-天冬氨酰-赖氨酰-脯氨酸(N-acetyl-seryl-aspartyl-lysyl-proline,AcSDKP)是一种具有生理调控活性的四肽因子,对造血干/祖细胞增殖具有抑制作用。本研究采用集落形成实验、甲基偶氮唑盐(MTT)比色法、细胞分裂指数测定等方法,考察了AcSDKP对体外培养的人骨髓间充质干细胞(mesenchymal stem cell,MSC)增殖的影响。结果显示,在AcSDKP浓度为1×10-12mol/L-1×10-9mol/L的培养体系中,人骨髓MSC集落生成率和大小、活力细胞数和分裂指数均降低,最大效应浓度为1×10-11mol/L。以上实验结果表明,在体外培养条件下,一定浓度的AcSDKP对人骨髓MSC 的增殖具有抑制作用。  相似文献   

13.
Malondialdehyde (MDA) is a well known inducer of carbonyl stress in a variety of human cells, however, its effects on human bone marrow mesenchymal stem cells (hMSCs) have not been documented. In this study, the effects of MDA concentration on the growth rate and proliferation of hMSCs in vitro were assessed. Under high concentrations of MDA, the cell count was decreased and the population doubling time (PDT) was lengthened. Flow cytometry (FCM) demonstrated that MDA triggered cells to undergo apoptosis, in parallel with the findings in MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay which showed that it can also impair cellular viability. Surprisingly, FCM also determined that the percentage of hMSCs in G2/M-and S-phases also increased in a dose-dependent manner with respect to MDA concentration. These results strongly suggest that even though hMSCs were severely impaired by high concentrations of MDA, they were still able to send signals that resulted in accelerated cellular proliferation process. This study provided important insights on how carbonyl stress affects cell cycle and proliferation of hMSCs. __________ Translated from Journal of Natural Science of Hunan Normal University, 2005, 28 (2) [译自: 湖南师范大学自然科学报, 2005,28(2)]  相似文献   

14.
The biologic characteristics of mesenchymal stem cells (MSCs) isolated from two distinct tissues, bone marrow and adipose tissue were evaluated in these studies. MSCs derived from human and non-human primate (rhesus monkey) tissue sources were compared. The data indicate that MSCs isolated from rhesus bone marrow (rBMSCs) and human adipose tissue (hASCs) had more similar biologic properties than MSCs of rhesus adipose tissue (rASCs) and human bone marrow MSCs (hBMSCs). Analyses of in vitro growth kinetics revealed shorter doubling time for rBMSCs and hASCs. rBMSCs and hASCs underwent significantly more population doublings than the other MSCs. MSCs from all sources showed a marked decrease in telomerase activity over extended culture; however, they maintained their mean telomere length. All of the MSCs expressed embryonic stem cell markers, Oct-4, Rex-1, and Sox-2 for at least 10 passages. Early populations of MSCs types showed similar multilineage differentiation capability. However, only the rBMSCs and hASCs retain greater differentiation efficiency at higher passages. Overall in vitro characterization of MSCs from these two species and tissue sources revealed a high level of common biologic properties. However, the results demonstrate clear biologic distinctions, as well.  相似文献   

15.
To support and enhance thein vitro growth and activity of mesenchymal stem cells (MSCs), the cell culture medium may be supplemented with various proteins and factors to mimic the physiological environment in which the cells optimally proliferate and differentiate. In this study, the effects of mechanical factors on cellular metabolic responses were investigated experimentally using a bioreactor. The effects of various chemical factors, such as growth factors, cytokines, and hormones, were also investigated. Based on previous reports demonstrating the important roles of mechanical factors in the growth and activity of MSCs, we sought to evaluate the effects of mechanical stimuli on the proliferation of bone marrow-derived MSCs using a cell training bioreactor that imposed cyclic mechanical stretch, with parameters of 240 min/day, 0.03 Hz, and 5–15% strain. The application of cyclic stretch (5–15% strain) to the MSCs enhanced their proliferation during the early stage (3 days), but not the late stage (14 days), of batch culture. Mechanical stretch did not increase the release of lactate dehydrogenase (LDH) from the MSCs during culture. Appropriate levels of mechanical stretch (5–10% strain) increased collagen synthesis, but did not alter MSC surface antigen expression. It is thought that the appropriate level of mechanical stretch was able to serve as a potent positive modulator of MSC proliferation during the initial stages of culture.  相似文献   

16.
Mechanical stimulation is critical to both physiological and pathological states of living cells. Although a great deal of research has been done on biological and biochemical regulation of the behavior of bone marrow mesenchymal stem cells (MSCs), the influence of biomechanical factors on their behavior is still not fully documented. In this study, we investigated the modulation of mechanical stretch magnitude, frequency, and duration on the human marrow mesenchymal stem cells (hMSCs) proliferation by an in vitro model system using a mechanical stretch loading apparatus, and optimized the stretch regime for the proliferation of hMSCs. We applied 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl tetrasodium bromide (MTT) assay to estimate the overall proliferative effects of the stretch on hMSCs. We found that fibronectin coating increased adhesion to silicone chamber surface, however, it did not show significant effect on proliferation of hMSCs. A frequency of 1 Hz was more effective in stimulating hMSCs proliferation. At 1 Hz, 5% strain for 15, 30, 60 min, the significant increase of hMSCs proliferation was observed. Proliferation was enhanced at 1 Hz, 10% strain for 15, 30 min, while decreased for 60 min. At 1 Hz, 15% strain, 15 min stretch resulted in the decrease of proliferation, and 30 min and 60 min stretch showed an increased proliferation. Long time (12 and 24 h) strain application blocked the proliferation. These results indicate that mechanical stretch plays an important role in hMSCs growth and proliferation; an appropriate mechanical stretch regime could be a novel approach to promoting proliferation of hMSCs in vitro.  相似文献   

17.
18.
19.
户小伟  劳山 《蛇志》2012,24(2):108-110
目的研究Wnt/β-catenin通路激活剂氯化锂(LiCl)对兔骨髓间充质干细胞(bone marrowmesen-chymal stem cells,BMSCs)增殖的影响。方法体外纯化培养兔BMSCs,流式细胞仪检测细胞表面抗体,以不同浓度的LiCl作用兔骨髓间充质干细胞24h后,采用Cell Counting Kit-8(CCK-8)检测各组细胞的增殖活性。结果低浓度LiCl促进兔BMSCs增殖,高浓度LiCl抑制兔BMSCs增殖。结论低浓度LiCl抑制GSK3β,模拟激活Wnt/β-catenin信号途径,从而促进细胞增殖,而高浓度LiCl增加了对细胞的毒性而抑制其增殖。  相似文献   

20.
New nonimmortalized fibroblast-like cell lines SC5-MSC and SC3a-MSC, FetMSC, FRSN were obtained from human embryonic stem cells (ESC), bone marrow of a 5-6-days embryo and foreskin of a 3-years-old boy, respectively. All the lines are successfully used as the feeder at human ESC cultivation. It is determined that the average cell population doublings time varies from 25.5 h for ISC5-MSC to 38.8 h for SC3a-MSC. Active proliferation of all the lines is also shown by the corresponding growth curves. Numerical and structural karyotypic analysis showed that these lines had normal karyotype: 46,XX (SC5-MSC and SC3a-MSC) and 46,XY (FetMSC and FRSN). To determine the status of the lines, their cell surface markers were analyzed by flow cytometry. This analysis revealed the presence of surface antigens CD44, CD73, CD90, CD105 and HLA-ABC, characteristic of human MSC, and the absence of CD34 and HLA-DR. Different lines were found to express CD117(c-kit) to a different level. Immunofluorescence and flow cytometry analysis did not detect TRA-1-60 and Oct-4, characteristic of human embryonic stem cells, and revealed interlinear variations in the level of SSEA, which did not depend on the cell origin. It is not clear yet whether these interlinear variations affect functional MSC status. In all the lines, immunofluorescence analysis showed the presence of the markers of early differentiation in the derivates of three germ layers which may allow MSC to be useful, in corresponding microenvironments, for reparation of tissue injures. Adipogenic and osteogenic differentiatiation of all cell lines has been shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号