首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pathology of Duchenne Muscular Dystrophy (DMD) is characterised by unstable muscle fibres and by increased cell turnover due to the absence of functional dystrophin protein. We have used skeletal muscle, primary muscle stem cell cultures (Smith and Schofield, 1994; Smith et al., paper submitted) and clonal cell lines of the mouse DMD model (mdx) and its congenic control (C57BI) to demonstrate that programmed cell death (PCD) and apoptotic morphology is increased in dystrophic (mdx) muscle and in cultured muscle cells. We also show that the peptide growth factor (IGF-II), which is thought to play a role in mammalian myogenesis, reduces PCD in mammalian skeletal muscle myoblasts both in vivo and in vitro. This is the first time that apoptosis or PCD have been demonstrated in normal mammalian skeletal muscle. We discuss the potential of this system in determining the role of PCD in mammalian myogenesis and skeletal muscle maturation, its significance in dystrophic muscle, and suggest a novel therapeutic route whereby the pathology of DMD may be alleviated using the survival properties of IGF-II.  相似文献   

2.
A new functional classification of muscles, determining movements of the mandible is presented. This classification reflects anatomo-topographic and histogenetic peculiarities of the muscles in question. Their functional differentiation in phylogenesis is motivated, coming from specific tasks they perform. Two groups of muscles of direct and mediated action on the mandible are distinguished. The groups are divided into functional subgroups. Mathematical correlations between various subgroups of the muscles at normal functioning of the mandible are presented. This makes possible to perform calculations of the acting muscle forces at planning reconstructive operative interventions in the maxillofacial area.  相似文献   

3.
Major replantation of a traction avulsion amputation is undertaken with the goal of not only the reestablishment of circulation, but also functional outcome. This type of amputation is characterized by different levels of soft-tissue divisions involving crushing, traction, and avulsion injuries to various structures. Between 1985 and 1998, 27 cases were referred for secondary reconstruction following amputation of the upper extremity involving both arm and forearm. Replantation was performed by at least 12 qualified plastic surgeons using different approaches and management, resulting in different outcomes. Initial replantation management significantly affects the later reconstruction. For comparing studies and prognostic implications, the authors propose a new classification according to the level of injury to muscles and innervated nerves: type I, amputation at or close to the musculotendinous aponeurosis with muscles remaining essentially intact; type II, amputation within the muscle bellies but with the proximal muscles still innervated; type III, amputation involving the motor nerve or neuromuscular junction, thereby causing total loss of muscle function; and type IV, amputation through the joint; i.e., disarticulation of the elbow or shoulder joint. Some patients required further reconstruction for functional restoration after replantation, but some did not. Through this retrospective study based on the proposed classification system, prospective guidelines for the management of different types of traction avulsion amputation are provided, including the value of replantation, length of bone shortening, primary or delayed muscle or nerve repair, necessity of fasciotomy, timing for using free tissue transfer for wound coverage, and the role of functioning free muscle transplantation for late reconstruction. The final functional outcome can also be anticipated prospectively through this classification system.  相似文献   

4.
This study investigates the stationarity of steady state mechanomyogram signals for the purpose of determining appropriate features for signal classification. Mechanomyography is the superficial recording of low frequency vibrations detected over contracting muscles. Steady state mechanomyogram signals, recorded at the belly of the extensor digitorum, flexor digitorum superficialis and flexor pollicis longus muscles during functional grasps were tested for weak stationarity. Twenty percent of the contractions were found to be non-stationary, indicating that time frequency methods may be appropriate for automatic pattern recognition of functional grasp from the mechanomyogram. The distribution of the stationary test statistic was dependent on the type of muscle contractions, suggesting that the test statistic itself might be a discriminating feature for mechanomyogram pattern recognition in applications such as multifunction prosthetic control. Since the major known source of non-stationarity was decreasing variance, it is suggested that shifts in the distribution of the test statistic may indicate the time course of relative muscle contributions to functional grasp.  相似文献   

5.
Biomechanical assessments of muscle function are often performed using a generic musculoskeletal model created from anatomical measurements obtained from cadavers. Understanding the validity of using generic models to study movement biomechanics is critical, especially when such models are applied to analyze the walking patterns of persons with impaired mobility. The aim of this study was to evaluate the accuracy of scaled-generic models in determining the moment arms and functional roles of the lower-limb muscles during gait. The functional role of a muscle was described by its potential to contribute to the acceleration of a joint or the acceleration of the whole-body center of mass. A muscle's potential acceleration was defined as the acceleration induced by a unit of muscle force. Dynamic simulations of walking were generated for four children with cerebral palsy and five age-matched controls. Each subject was represented by a scaled-generic model and a model developed from magnetic resonance (MR) imaging. Calculations obtained from the scaled-generic model of each subject were evaluated against those derived from the corresponding MR-based model. Substantial differences were found in the muscle moment arms computed using the two models. These differences propagated to calculations of muscle potential accelerations, but predictions of muscle function (i.e., the direction in which a muscle accelerated a joint or the center of mass and the magnitude of the muscle's potential acceleration relative to that of other muscles) were consistent between the two modeling techniques. Our findings suggest that scaled-generic models and image-based models yield similar assessments of muscle function in both normal and pathological gait.  相似文献   

6.
Spangenburg EE  Booth FW 《Cytokine》2006,34(3-4):125-130
Cytokines and growth factors are thought to contribute to skeletal muscle hypertrophy. Leukemia inhibitory factor (LIF), a cytokine, enhances skeletal muscle regeneration; however the role of LIF in skeletal muscle hypertrophy remains uncertain. We examined the hypertrophic ability of the plantaris and soleus muscles in wild-type mice (WT) and LIF knock-out mice [LIF(-/-)] in response to increased mechanical load. Using the functional overload model to induce increases in mechanical load on the plantaris and soleus muscle, WT mice demonstrated increases in plantaris and soleus mass after 7, 21, and 42 days of loading. However, the LIF(-/-) mice had no significant increases in plantaris muscle mass at any time point, while the soleus muscle exhibited a delayed hypertrophic response. Systemic delivery of LIF to the LIF(-/-) mice returned the hypertrophic response to the same levels as the WT mice after 21 days of functional overload. These data demonstrate for the first time that LIF expression in loaded skeletal muscle is critical for the development of skeletal muscle hypertrophy in the functional overload model.  相似文献   

7.
MOTIVATION: Current projects for the massive characterization of proteomes are generating protein sequences and structures with unknown function. The difficulty of experimentally determining functionally important sites calls for the development of computational methods. The first techniques, based on the search for fully conserved positions in multiple sequence alignments (MSAs), were followed by methods for locating family-dependent conserved positions. These rely on the functional classification implicit in the alignment for locating these positions related with functional specificity. The next obvious step, still scarcely explored, is to detect these positions using a functional classification different from the one implicit in the sequence relationships between the proteins. Here, we present two new methods for locating functional positions which can incorporate an arbitrary external functional classification which may or may not coincide with the one implicit in the MSA. The Xdet method is able to use a functional classification with an associated hierarchy or similarity between functions to locate positions related to that classification. The MCdet method uses multivariate statistical analysis to locate positions responsible for each one of the functions within a multifunctional family. RESULTS: We applied the methods to different cases, illustrating scenarios where there is a disagreement between the functional and the phylogenetic relationships, and demonstrated their usefulness for the phylogeny-independent prediction of functional positions.  相似文献   

8.
Historical Perspectives: plasticity of mammalian skeletal muscle.   总被引:8,自引:0,他引:8  
More than 40 years ago, the nerve cross-union experiment of Buller, Eccles, and Eccles provided compelling evidence for the essential role of innervation in determining the properties of mammalian skeletal muscle fibers. Moreover, this experiment revealed that terminally differentiated muscle fibers are not inalterable but are highly versatile entities capable of changing their phenotype from fast to slow or slow to fast. With the use of various experimental models, numerous studies have since confirmed and extended the notion of muscle plasticity. Together, these studies demonstrated that motoneuron-specific impulse patterns, neuromuscular activity, and mechanical loading play important roles in both the maintenance and transition of muscle fiber phenotypes. Depending on the type, intensity, and duration of changes in any of these factors, muscle fibers adjust their phenotype to meet the altered functional demands. Fiber-type transitions resulting from multiple qualitative and quantitative changes in gene expression occur sequentially in a regular order within a spectrum of pure and hybrid fiber types.  相似文献   

9.
Characterizing muscle requires measuring such properties as force–length, force–activation, and force–velocity curves. These characterizations require large numbers of data points because both what type of function (e.g., linear, exponential, hyperbolic) best represents each property, and the values of the parameters in the relevant equations, need to be determined. Only a few properties are therefore generally measured in experiments on any one muscle, and complete characterizations are obtained by averaging data across a large number of muscles. Such averaging approaches can work well for muscles that are similar across individuals. However, considerable evidence indicates that large inter-individual variation exists, at least for some muscles. This variation poses difficulties for across-animal averaging approaches. Methods to fully describe all muscle’s characteristics in experiments on individual muscles would therefore be useful. Prior work in stick insect extensor muscle has identified what functions describe each of this muscle’s properties and shown that these equations apply across animals. Characterizing these muscles on an individual-by-individual basis therefore requires determining only the values of the parameters in these equations, not equation form. We present here techniques that allow determining all these parameter values in experiments on single muscles. This technique will allow us to compare parameter variation across individuals and to model muscles individually. Similar experiments can likely be performed on single muscles in other systems. This approach may thus provide a widely applicable method for characterizing and modeling muscles from single experiments.  相似文献   

10.
In previous applications of the finite element method in modeling mechanical behavior of skeletal muscle, the passive and active properties of muscle tissue were lumped in one finite element. Although this approach yields increased understanding of effects of force transmission, it does not support an assessment of the interaction between the intracellular structures and extracellular matrix. In the present study, skeletal muscle is considered in two domains: (1) the intracellular domain and (2) extracellular matrix domain. The two domains are represented by two separate meshes that are linked elastically to account for the trans-sarcolemmal attachments of the muscle fibers' cytoskeleton and extracellular matrix. With this approach a finite element skeletal muscle model is developed, which allows force transmission between these domains with the possibility of investigating their interaction as well as the role of the trans-sarcolemmal systems. The model is applied to show the significance of myofascial force transmission by investigating possible mechanical consequences due to any missing link within the trans-sarcolemmal connections such as found in muscular dystrophies. This is realized by making the links between the two meshes highly compliant at selected intramuscular locations. The results indicate the role of extracellular matrix for a muscle in sustaining its physiological condition. It is shown that if there is an inadequate linking to the extracellular matrix, the myofibers become deformed beyond physiological limits due to the lacking of mechanical support and impairment of a pathway of force transmission by the extracellular matrix. This leads to calculation of a drop of muscle force and if the impairment is located more towards the center of the muscle model, its effects are more pronounced. These results indicate the significance of non-myotendinous force transmission pathways.  相似文献   

11.
12.
While there are a growing number of increasingly complex methodologies available to model geometry and material properties of bones, these models still cannot accurately describe physical behaviour of the skeletal system unless the boundary conditions, especially muscular loading, are correct. Available in vivo measurements of muscle forces are mostly highly invasive and offer no practical way to validate the outcome of any computational model that predicts muscle forces. However, muscle forces can be verified indirectly using the fundamental property of living tissue to functional adaptation and finite element (FE) analysis. Even though the mechanisms of the functional adaptation are not fully understood, its result is clearly seen in the shape and inner structure of bones. The FE method provides a precise tool for analysis of the stress/strain distribution in the bone under given loading conditions. The present work sets principles for the determination of the muscle forces on the basis of the widely accepted view that biological systems are optimized light-weight structures with minimised amount of unloaded/underloaded material and hence evenly distributed loading throughout the structure. Bending loading of bones is avoided/compensated in bones under physiological loading. Thus, bending minimisation provides the basis for the determination of the musculoskeletal system loading. As a result of our approach, the muscle forces for a human femur during normal gait and sitting down (peak hip joint force) are obtained such that the bone is loaded predominantly in compression and the stress distribution in proximal and diaphyseal femur corresponds to the material distribution in bone.  相似文献   

13.
Role of creatine phosphokinase in cellular function and metabolism.   总被引:9,自引:0,他引:9  
This paper summarizes the data concerning the role of the creatine phosphokinase system in muscle cells with main attention to the cardiac muscle. Creatine phosphokinase isoenzymes play a key role in the intracellular energy transport from mitochondria to myofibrils and other sites of energy utilization. Due to the existence of the creatine phosphate pathway for energy transport, intracellular creatine phosphate concentration is apparently an important regulatory factor for muscle contraction which influences the contractile force by determining the rate of regeneration of ATP directly available for myosin ATPase, and at the same time controls the activator calcium entry into the myoplasm across the surface membrane of the cells.  相似文献   

14.
Cell and fiber-type distribution of dystrophin   总被引:13,自引:0,他引:13  
Duchenne muscular dystrophy is the result of dystrophin deficiency. We have determined the cell types likely to express the pathogenic effects of this neuromuscular disease by determining the pattern of dystrophin expression in normal cells. We find that all physiological types of muscle cells express dystrophin at similar levels, and that the dystrophin content of various tissues correlates with the myogenic cell population of each tissue. The dystrophin content of brain and spinal cord, however, is found not to correlate with any type of muscle cell, and it is suggested that neurons express dystrophin. The potential involvement of striated muscle fibers, the vasculature, and the nervous system in the etiology of Duchenne muscular dystrophy makes it likely that the disease is a complex disorder of combined pathogenesis. We also find that the dystrophic chicken does not represent an animal model for dystrophin deficiency.  相似文献   

15.
This paper reviews evidence supporting adaptive plasticity in muscle and cutaneous afferent reflex pathways induced by training and rehabilitative interventions. The perspective is advanced that the behavioral and functional relevance of any intervention and the reflex pathway under study should be considered when evaluating both adaptation and transfer. A cornerstone of this concept can be found in acute task-dependent reflex modulation. Because the nervous system allows the expression of a given reflex according to the motor task, an attempt to evaluate the training adaptation should also be evoked under the same conditions as training bearing in mind the functional role of the pathway under study. Within this framework, considerable evidence supports extensive adaptive plasticity in human muscle afferent pathways in the form of operant conditioning, strength training, skill training, and locomotor training or retraining. Directly comparable evidence for chronic adaptation in cutaneous reflex pathways is lacking. However, activity-dependent plasticity in cutaneous pathways is documented particularly in approaches to neurological rehabilitation. Overall, the adaptive range for human muscle afferent reflexes appears bidirectional (that is, increased or reduced amplitudes) and on the order of 25-50%. The adaptive range for cutaneous pathways is currently uncertain.  相似文献   

16.
The purposes of this study were to describe the functional roles of the hamstrings and quadriceps at the hip and knee during cycling as determined both by the standard kinetic (SK) classification method and by the Andrews kinematic (AK) classification method (Andrews, J. biomech Engng 107, 348-353, 1985), and to examine the effect of using these two different methods on the existence of paradoxical muscle behavior (Lombard's Paradox). The results of this study indicated that the functional roles determined by the SK and AK methods differed considerably, and these differences led to the existence of paradoxical behavior in the hamstrings and quadriceps at different regions of the crank cycle. Both classification methods led to the existence of considerable paradoxical muscle behavior, with the SK method predicting somewhat more non-paradoxical activity and somewhat less paradoxical activity than the AK method at both the hip and the knee.  相似文献   

17.
The recombinant limb is a model system that has proved fruitful for analyzing epithelial-mesenchymal interactions and understanding the functional properties of the components of the limb bud. Here we present an overview of some of the insights obtained through the use of this technique. Among these are the understanding that fore or hind limb identity is inherent to the limb bud mesoderm, that the apical ectodermal ridge (AER) is a permissive signaling center and that the limb bud ectoderm plays a central role in the control of dorsoventral polarity. Recombinant limb studies have also allowed the identification of the affected tissue component in several limb mutants. More recently this model has been applied to the study of regulation of gene expressions related to patterning. In this report we use recombinant limbs to analyze pattering of the Pax3 expressing limb muscle cell lineage in the early stages of limb development. In recombinant limbs made without the zone of polarizing activity (ZPA), myoblasts appear intermingled with other mesodermal cells at the beginning of the recombinant limb development. Rapidly thereafter, the muscle precursors segregate and organize around the central forming chondrogenic core of the recombinant. Although this segregation is reminiscent of that occurring during normal development, the myoblasts in the recombinant fail to proliferate appropriately and also fail to migrate distally. Consequently, the muscle pattern in the recombinant limb is defective indicating that normal patterning cues are absent. However, recombinant limbs polarized with a ZPA exhibited a larger mass of muscle cells and a more normal morphogenesis, supporting a role for this signaling center in limb muscle development. Finally, we have ruled out host somite contributions to recombinant limbs by grafting chick recombinant limbs to quail hosts. This initial report demonstrates the value of the recombinant limb model system for dissecting the environmental cues required for normal muscle limb patterning. Received: 31 August 1998 / Accepted: 29 September 1998  相似文献   

18.
Summary This article introduces new methods for performing classification of complex, high‐dimensional functional data using the functional mixed model (FMM) framework. The FMM relates a functional response to a set of predictors through functional fixed and random effects, which allows it to account for various factors and between‐function correlations. The methods include training and prediction steps. In the training steps we train the FMM model by treating class designation as one of the fixed effects, and in the prediction steps we classify the new objects using posterior predictive probabilities of class. Through a Bayesian scheme, we are able to adjust for factors affecting both the functions and the class designations. While the methods can be used in any FMM framework, we provide details for two specific Bayesian approaches: the Gaussian, wavelet‐based FMM (G‐WFMM) and the robust, wavelet‐based FMM (R‐WFMM). Both methods perform modeling in the wavelet space, which yields parsimonious representations for the functions, and can naturally adapt to local features and complex nonstationarities in the functions. The R‐WFMM allows potentially heavier tails for features of the functions indexed by particular wavelet coefficients, leading to a down‐weighting of outliers that makes the method robust to outlying functions or regions of functions. The models are applied to a pancreatic cancer mass spectroscopy data set and compared with other recently developed functional classification methods.  相似文献   

19.
Mutations in the human dystrophin gene are implicated in the fatal muscle wasting disease Duchenne Muscular Dystrophy (DMD). This gene expresses a sarcolemmal-associated protein that is evolutionarily conserved, underpinning its important role in the architecture of muscle. In terms of DMD modelling, the mouse has served as a suitable vertebrate species but the pathophysiology of the disease in the mouse does not entirely mimic human DMD. We have examined the zebrafish in order to expand the repertoire of vertebrate species for muscle disease modelling, and to dissect further the functional interactions of dystrophin. We report here the identification of an apparent zebrafish orthologue of the human dystrophin gene that expresses a 400-kDa protein that is localised to the muscle membrane surface. These data suggest that the zebrafish may prove to be a beneficial vertebrate model to examine the role and functional interactions of dystrophin in disease and development.  相似文献   

20.
We propose a novel iterative scheme for adaptive smoothing of functional MR images. The method estimates a signal model at every voxel in the time-series, which is subsequently used in determining the weights of the smoothing kernel. The method does not require any information about the test hypothesis and is well-suited as a preprocessing step for both hypothesis-driven and data-driven analysis techniques. We demonstrate the performance of the proposed method by applying it to preprocess both simulated and real fMRI data. The method is found to effectively suppress the noise while preserving the shapes of the active brain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号