首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract

Exposure of Zea mays seedlings to a continuous electromagnetic field (EMF) for 30 h induced a 30% stimulation in the rate of root elongation compared with the controls. It also resulted in a significant increase of cell expansion, in both the acropetal (metaxylem cell lineage) and basipetal (root cap cells) direction. In addition, in EMF-exposed roots a precocious structural disorder was observed both in differentiating metaxylem cells and root cap cells. All these features may be consistent with an advanced differentiation of root cells that are programmed to die. EMF treatment also resulted in a significant reduction in the size of the quiescent centre in the root apical meristem. The extent to which these responses are causally linked is discussed.  相似文献   

2.
Chemical analysis of 4-day-old corn (Zea mays L.) root cell walls revealed that the lipophilic biopolymer suberin forms an important constituent of rhizodermal and hypodermal cell walls. Identified aliphatic monomers had chain lengths ranging from C16 to C26 and they belonged to 5 substance classes (omega-hydroxycarboxylic acids, 1,omega-dicarboxylic acids, 2-hydroxycarboxylic acids, carboxylic acids and alcohols) by which suberin is characterized. Biochemical experiments proved the occurrence of elongase activities in corn roots. Highest enzymatic activities were found in corn root microsomes, and major products synthesized by root elongases were elongated fatty acids with chain lengths ranging from C20 to C24. Preferred substrates of root elongases were acyl-CoAs of the chain length C18 and C20, whereas monounsaturated acyl-CoAs (C16:1 and C18:1) and acyl-CoAs of lower (C12-C16) and higher chain lengths (C22-C24) were rarely elongated. Elongase activities significantly decreased over the length (40 cm) of 10-day-old corn roots going from the young tip to the older base of the root. Thus, results presented here show the presence and activity of elongases in roots of plants.  相似文献   

3.
A number of adenine derivatives with cytokinin activity were isolated from immature sweet corn (Zea mays) kernels. The following structures were assigned: 9-β-d-ribofuranosylzeatin, 9-β-d-ribofuranosylzeatin 5′-monophosphate, 6-(1-carboxy-2-hydroxypropylamino)-9-ribofuranosylpurine, 6-(2,3,4-trihydroxy-3-methylbutylamino)purine, 2-hydroxy-6-(4-hydroxy-3-methylbut-trans-2-enylamino)purine, 6-(3,4-dihydroxy-3-methylbutylamino)purine, a 9-glycoside of zeatin(identity of sugar moiety not established), and 6-(1,2-dicarboxyethylamino)-9-β-d-ribofuranosylpurine.  相似文献   

4.
Peter W. Barlow 《Planta》1970,91(2):169-172
Summary Mitotic spindles in the root meristem of the Zea mays are smallest in the quiescent centre and increase in size the further they are from this region. the volume of mitotic cells follows a similar pattern. These findings are the result of differences in the metabolic activity of cells within the meristem. Observations also suggest that there may be fewer microtubules in the spindle of quiescent centre cells than in cells elsewhere, thus supporting the suggestion that this may be so made by Juniper and Barlow (1969).  相似文献   

5.
The crude lysosomal fraction of corn seedling root tips contains an arylsulphatase (E.C. 3.1.6.1) which hydrolysed p-nitrophenyl sulphate at pH 8.0 but had no activity towards p-nitrocatechol sulphate. The Km value for p-nitrophenyl sulphate was 1.24 mM. The hydrolysis of p-nitrophenyl sulphate was linear up to 2 h and the rate was proportional to the amount of enzyme added. The enzyme was strongly inhibited by cyanide, fluoride and phosphate ions and did not resemble the arylsulphatases of bacterial and animal origin.  相似文献   

6.
S. K. Hillman  M. B. Wilkins 《Planta》1982,155(3):267-271
Time-lapse photography and light microscopy were used to determine whether or not sedimentation of the newly developed amyloplasts in the apex of Zea mays L. roots occurred at the time when geotropic responsiveness reappears following removal of the cap. All decapped roots exhibiting a geotropic response had some amyloplast sedimentation in the apical cortical cells. Exposing decapped roots to a centrifugal acceleration of 25 g for 4 h showed that amyloplasts of a similar size and development were not displaced within the cytoplasm when this treatment began 12 h after decapping, whereas displacement did occur when the treatment began 24 h after decapping. This finding indicates the occurrence of a change in the physical characteristics of the cytoplasm between 12 h and 24 h after removing of the cap, which allows amyloplast movement and thus restores gravity perception.  相似文献   

7.
Takashi Suzuki  Tadashi Fujii 《Planta》1978,142(3):275-279
The induction by light of geotropic responsiveness in the primary roots of Zea mays L. (cv. Golden Cross Bantam 70) was found to be governed by the all-or-none law. The response was induced by light energies above a threshold value, but the maximal curvature of geo-stimulated roots was constand irrespective of the light energy above that threshold. The action spectrum for this light effect showed a large peak at 650, a small peak at 410, and a shoulder at 663 nm. The effect of red light was not reversed by far-red light. Thus, the geotropic response in Zea roots may not be controlled by phytochrome.  相似文献   

8.
The effects of Pb, Sr, and Ni nitrates on the root growth, its cell division and elongation were studied. Two-day-old maize seedlings were incubated on the 35 μM Ni(NO3)2, 10 μM Pb(NO3)2, or 3 mM Sr(NO3)2 in the presence or absence of 3 mM Ca(NO3)2. Metal toxicity was evaluated after the inhibition of root growth for the first and second days of incubation in comparison with the roots kept on water or Ca(NO3)2 solution. The contents of metals were determined in the apical (the first centimeter from the tip) and basal (the third centimeter from the kernel) root parts by voltamperometry and atomic-absorption spectrophotometry. We measured the length of the meristem, the length of the fully elongated cells, counted the mitotic index (MI) in the meristem and the number of meristematic cells in the cortex row; we also calculated duration the cell cycle. In the absence of Ca(NO3)2, the metal content in the apical root region was higher than in basal one. In the presence of Ca(NO3)2, we observed reverse ratio most pronounced in the case of Pb and Sr. All metals tested markedly reduced MI in the cortex, which was determined by the increase in the cell cycle duration and accompanied by the meristem shortening. These metals affected differently cell division and elongation: Ni inhibited mainly cell division and to a lesser degree their elongation, whereas Sr and Pb affected both cell division and elongation; only Sr treatment resulted in the increased length of the fully elongated cells. In the presence of Ca, all studied growth indices changed less than in the absence of Ca, which was manifested in the less severe suppression of the root growth and was in agreement with the lower accumulation of the metals in the root tips. Possible causes for the heavy metal action on growth are discussed in connection with the specificity of their transport and accumulation.  相似文献   

9.
Summary Roots of 3.5-day-old seedlings of Zea mays cv. Giant White Horsetooth contain an extractable auxin which has chromatographic properties and reactions to chromogenic sprays identical with those of indole-3-acetic acid (IAA). By separating stele from cortex (and root tips) before extraction it was shown that the auxin is localized predominantly in the stele, with little being found in the cortex. Whole roots, isolated cortices and isolated steles accumulate and metabolize exogenously applied IAA-1-14C. The stelar tissue is distinguished from whole roots and cortical tissue in having a different pattern of IAA metabolism.  相似文献   

10.
The synthesis and metabolism of indole-3-acetic acid (IAA) was investigated in isolated roots of corn, Zea mays L. Roots were cultured aseptically in media supplemented with either 14C-tryptophan or 14C-IAA. Exogenously supplied IAA is rapidly and completely metabolized by root tissues. The main site in the root for the synthesis of IAA is in the apex. Removal of either the root cap or the quiescent center, or the root cap and the quiescent center from the apex has no effect on the IAA-synthesizing ability of the apex. Subdividing the terminal 2.1 cm of the root into various segments and culturing them separately stimulates IAA synthesis in these isolated root tissues. Roots in culture maintain relatively constant IAA levels, reflecting the precise controls of the level of this hormone.  相似文献   

11.
A peptidoglycan (PG) cell wall composed of glycans crosslinked by short peptides surrounds most bacteria and protects them against osmotic rupture. In Escherichia coli, cell elongation requires crosslink cleavage by PG endopeptidases to make space for the incorporation of new PG material throughout the cell cylinder. Cell division, on the contrary, requires the localized synthesis and remodeling of new PG at midcell by the divisome. Little is known about the factors that modulate transitions between these two modes of PG biogenesis. In a transposon-insertion sequencing screen to identify mutants synthetically lethal with a defect in the division protein FtsP, we discovered that mutants impaired for cell division are sensitive to elevated activity of the endopeptidases. Increased endopeptidase activity in these cells was shown to interfere with the assembly of mature divisomes, and conversely, inactivation of MepS was found to suppress the lethality of mutations in essential division genes. Overall, our results are consistent with a model in which the cell elongation and division systems are in competition with one another and that control of PG endopeptidase activity represents an important point of regulation influencing the transition from elongation to the division mode of PG biogenesis.  相似文献   

12.
Aluminum (Al) induces agricultural problems limiting crop productivity in acid soils. Since Al causes morphological changes in roots, and because microtubules (MTs) play important roles in determination of tissue morphology, we investigated whether Al affects the arrangement of MTs in maize root meristem using immunolocalization techniques. When seedling roots were treated with 50 μM Al, the orientations of MTs were dramatically altered in a population of cells located in the protoderm and the two outer layers of cortex: interphase cortical MT arrays lost their normal transverse organization and became random or longitudinal; the preprophase band of MTs, mitotic spindle, and phragmoplast developed at planes 90° rotated compared to their counterparts in controls. These changes in MT orientation resulted in the change of the division plane from transverse to longitudinal, producing daughter cells positioned side by side instead of above and below. The rotation of the otherwise normal MT arrays and the division plane in Al-treated roots indicates that Al interferes with the normal polarity sensing mechanism, which may contribute to the reduced axial growth of the Al-treated roots.  相似文献   

13.
Maimon E  Moore R 《Annals of botany》1991,67(2):145-151
We examined the gravitropic responses of surgically altered primary roots of Zea mays to determine the route by which gravitropic inhibitors move from the root tip to the elongating zone. Horizontally oriented roots, from which a 1-mm-wide girdle of epidermis plus 2-10 layers of cortex were removed from the apex of the elongating zone, curve downward. However, curvature occurred only apical to the girdle. Filling the girdle with mucilage-like material transmits curvature beyond the girdle. Vertically oriented roots with a half-girdle' (i.e. the epidermis and 2-10 layers of the cortex removed from half of the circumference of the apex of the elongating zone) curve away from the girdle. Inserting the half-girdle at the base of the elongating zone induces curvature towards the girdle. Filling the half-circumference girdles with mucilage-like material reduced curvature significantly. Stripping the epidermis and outer 2-5 layers of cortex from the terminal 1.5 cm of one side of a primary root induces curvature towards the cut, irrespective of the root's orientation to gravity. This effect is not due to desiccation since treated roots submerged in water also curved towards their cut surface. Coating a root's cut surface with a mucilage-like substance minimizes curvature. These results suggest that the outer cell-layers of the root, especially the epidermis, play an important role in root gravicurvature, and the gravitropic signals emanating from the root tip can move apoplastically through mucilage.  相似文献   

14.
Lewis J. Feldman 《Planta》1981,153(5):471-475
Growth inhibitors were assayed from extracts of intact (attached) and of excised (cultured) root caps of Zea mays L., cv. Merit, the roots of which show a positive geotropic response only after exposure to light. If caps are intact at the time of illumination, at least two inhibitory substances are produced, an acid inhibitor and a neutral inhibitor, whereas if caps are detached from roots, placed in culture and then illuminated only the neutral inhibitor is formed. Cycloheximide retards inhibitor production in both intact and cultured caps. When [14C]mevalonic acid is included in the culture medium and the caps are illuminated, 15–25% of the recoverable 14C cochromatographs with the neutral inhibitor, whereas in caps cultured in the dark, this radiolabelling pattern is not observed. Cyloheximide in the light reduces the incorporation of 14C into compounds cochromatographing at the Rf of the neutral inhibitor. It is suggested that the neutral inhibitor may be important in the light-induced bending of roots.Abbreviations ABA abscisic acid - CH cycloheximide  相似文献   

15.
Exit from the Mitotic Cycle in Root Meristems of Zea mays L.   总被引:3,自引:0,他引:3  
CLOWES  F. A. L. 《Annals of botany》1983,51(3):385-393
The choice between two modes of exit from the mitotic cycleat the margins of meristems has been made easier by surveyingthe range of the numbers of cell contacts between contiguousfiles in root apices of Zea mays L. The range shows that somecells must go out of cycle while others remain in cycle forat least three further generations. The view that cycling endsby a fall in the proliferative fraction is supported by theexistence of pulse-labelled telophases in the proximal regionof the menstem. These are most likely due to acceleration ofthe mitotic cycle which has to be contrasted with decelerationof the overall rate of cell proliferation. The work is discussedin relation to patterns of cycling in the different tissuesof the apex. mitotic cycle, cell size, meristem, proliferative fraction, Zea mays L, maize  相似文献   

16.
17.
Epidermal differentiation in primary roots of Zea mays was divided into six cell types based on cellular shape and cytoplasmic appearance. These six cell types are: 1) apical protoderm, located at the tip of the root pole and characterized by periclinally flattened cells; 2) cuboidal protoderm, located approximately 230 microns from the root pole and characterized by cuboidal cells; 3) tabular epidermis, located approximately 450 microns from the root pole and characterized by anticlinally flattened cells; 4) cuboidal epidermis, located approximately 900 microns from the root pole and characterized by cuboidal cells having numerous small vacuoles; 5) vacuolate cuboidal epidermis, located approximately 1,500 microns from the root pole and characterized by cuboidal cells containing several large vacuoles; and 6) columnar epidermis, located approximately 2,200 microns from the root pole (i.e., at the beginning of the zone of elongation) and characterized by elongated cells. We also used stereology to quantify the cellular changes associated with epidermal differentiation. The quiescent center and the apical protoderm have significantly different ultrastructures. The relative volume of dictyosomes increases dramatically during the early stages of epidermal differentiation. This increase correlates inversely with the amount of coverage provided by the root cap and mucilage.  相似文献   

18.
Ma  Jian Feng  Sasaki  Masao  Matsumoto  Hideaki 《Plant and Soil》1997,188(2):171-176
The effect of silicic acid on Al-induced inhibition of root elongation was investigated in corn roots (Zea mays L. cv. golden cross bantam) in 100 t M CaCl2 solution at pH 4.3. Twenty t M Al inhibited root elongation (20 h) about 70%, however, inhibition was alleviated by addition of silicic acid. The alleviative effect increased with higher silicic acid concentrations. The concentration of Al3+, the toxic species, in solution was decreased to about 15, 10, and 5 t M, respectively, from the initial concentration of 20 t M by addition of silicic acid at 500, 1000, and 2000 t M Si. Under the same concentration of Al3+, Al-induced inhibition of root elongation showed the same extent regardless of the addition of silicic acid or not by comparing 5 t M Al treatment with 20 t M Al + 2000 t M Si treatment, and 10 t M Al treatment with 20 t M Al +1000 t M Si treatment. Viability of cells on the root tip surface was decreased by Al addition. Cell viability was not improved by addition of silicic acid under the same concentration of Al3+. All these facts suggest that the alleviative effect of silicic acid on Al toxicity resulted from decreasing toxic Al3+ concentration by forming Al-Si complexes rather than from other physiological effects of silicic acid in corn roots.  相似文献   

19.
Primary roots of Zea mays seedlings germinated and grown in 0.1 mM chloramphenicol (CMP) were significantly less graviresponsive than primary roots of seedlings germinated and grown in distilled water. Elongation rates of roots treated with CMP were significantly greater than those grown in distilled water. Caps of control and CMP-treated roots possessed extensive columella tissues comprised of cells containing numerous sedimented amyloplasts. These results indicate that the reduced graviresponsiveness of CMP-treated roots is not due to reduced rates of elongation, the absence of the presumed gravireceptors (i.e., amyloplasts in columella cells), or reduced amounts of columella tissue. These results are consistent with CMP altering the production and/or transport of effectors that mediate gravitropism.  相似文献   

20.
Growth inhibitors in roots of light- and dark-grown seedlings of Zea mays   总被引:1,自引:0,他引:1  
Abscisic acid and 6-methoxy-2-benzoxazolinone have been identified as growth-inhibitory compounds in the primary roots of Zea mays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号