首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Despite the importance of blood vessels and lymphatic vessels during development and disease, the signalling pathways underpinning vessel construction remain poorly characterised. Primary mouse endothelial cells have traditionally proven difficult to culture and as a consequence, few assays have been developed to dissect gene function and signal transduction pathways in these cells ex vivo. Having established methodology for the purification, short-term culture and transfection of primary blood (BEC) and lymphatic (LEC) vascular endothelial cells isolated from embryonic mouse skin, we sought to optimise robust assays able to measure embryonic LEC proliferation, migration and three-dimensional tube forming ability in vitro. In the course of developing these assays using the pro-lymphangiogenic growth factors FGF2 and VEGF-C, we identified previously unrecognised roles for FGFR1 signalling in lymphangiogenesis. The small molecule FGF receptor tyrosine kinase inhibitor SU5402, but not inhibitors of VEGFR-2 (SU5416) or VEGFR-3 (MAZ51), inhibited FGF2 mediated LEC proliferation, demonstrating that FGF2 promotes proliferation directly via FGF receptors and independently of VEGF receptors in primary embryonic LEC. Further investigation revealed that FGFR1 was by far the predominant FGF receptor expressed by primary embryonic LEC and correspondingly, siRNA-mediated FGFR1 knockdown abrogated FGF2 mediated LEC proliferation. While FGF2 potently promoted LEC proliferation and migration, three dimensional tube formation assays revealed that VEGF-C primarily promoted LEC sprouting and elongation, illustrating that FGF2 and VEGF-C play distinct, cooperative roles in lymphatic vascular morphogenesis. These assays therefore provide useful tools able to dissect gene function in cellular events important for lymphangiogenesis and implicate FGFR1 as a key player in developmental lymphangiogenesis in vivo.  相似文献   

3.
Previous analyses of labelled clones of cells within the developing nervous system of the mouse have indicated that descendants are initially dispersed rostrocaudally followed by more local proliferation, which is consistent with the progressing node's contributing descendants from a resident population of progenitor cells as it advances caudally. Here we electroporated an expression vector encoding green fluorescent protein into the chicken embryo near Hensen's node to test and confirm the pattern inferred in the mouse. This provides a model in which a proliferative stem zone is maintained in the node by a localized signal; those cells that are displaced out of the stem zone go on to contribute to the growing axis. To test whether fibroblast growth factor (FGF) signalling could be involved in the maintenance of the stem zone, we co-electroporated a dominant-negative FGF receptor with a lineage marker, and found that it markedly alters the elongation of the spinal cord primordium. The results indicate that FGF receptor signalling promotes the continuous development of the posterior nervous system by maintaining presumptive neural progenitors in the region near Hensen's node. This offers a potential explanation for the mixed findings on FGF in the growth and patterning of the embryonic axis.  相似文献   

4.
5.
The fibroblast growth factor (FGF) signalling pathway is one of the most ubiquitous in biology. It has diverse roles in development, differentiation and cancer. Embryonic stem (ES) cells are in vitro cell lines capable of differentiating into all the lineages of the conceptus. As such they have the capacity to differentiate into derivatives of all three germ layers and to some extent the extra‐embryonic lineages as well. Given the prominent role of FGF signalling in early embryonic development, we explore the role of this pathway in early ES cell differentiation towards the major lineages of the embryo. As early embryonic differentiation is intricately choreographed at the level of morphogenetic movement, adherent ES cell culture affords a unique opportunity to study the basic steps in early lineage specification in the absence of ever shifting complex in vivo microenvironments. Thus recent experiments in ES cell differentiation are able to pinpoint specific FGF dependent lineage transitions that are difficult to resolve in vivo. Here we review the role of FGF signalling in early development alongside the ES cell data and suggest that FGF dependent signalling via phospho‐Erk activation maybe a major mediator of transitions in lineage specification. J. Cell. Biochem. 110: 10–20, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
8.
During gastrulation in the mouse, the pluripotent embryonic ectoderm cells form the three primary germ layers, ectoderm, mesoderm and endoderm. Little is known about the mechanisms responsible for these processes, but evidence from previous studies in amphibians, as well as expression studies in mammals, suggest that signalling molecules of the Fibroblast Growth Factor (FGF) family may play a role in gastrulation. To determine whether this might be the case for FGF-5 in the mouse embryo, we carried out RNA in situ hybridization studies to determine when and where in the early postimplantation embryo the Fgf-5 gene is expressed. We chose to study this particular member of the FGF gene family because we had previously observed that its pattern of expression in cultures of teratocarcinoma cell aggregates is consistent with the proposal that Fgf-5 plays a role in gastrulation in vivo. The results reported here show that Fgf-5 expression increases dramatically in the pluripotent embryonic ectoderm just prior to gastrulation, is restricted to the cells forming the three primary germ layers during gastrulation, and is not detectable in any cells in the embryo once formation of the primary germ layers is virtually complete. Based on this provocative expression pattern and in light of what is known about the functions in vitro of other members of the FGF family, we hypothesize that in the mouse embryo Fgf-5 functions in an autocrine manner to stimulate the mobility of the cells that contribute to the embryonic germ layers or to render them competent to respond to other inductive or positional signals.  相似文献   

9.
10.
11.
FGF4, a member of the fibroblast growth factor (FGF) family, is absolutely required for periimplantation mouse development, although its precise role at this stage remains unknown. The nature of the defect leading to postimplantation lethality of embryos lacking zygotic FGF4 is unclear and little is known about downstream targets of FGF4-initiated signaling within the various cellular compartments of the blastocyst. Here we report that postimplantation lethality of Fgf4(-/-) embryos is unlikely to reflect strictly mitogenic requirements for FGF4. Rather, our results suggest that FGF4 is required to maintain trophectoderm and primitive endoderm identity at embryonic day 4.5. This result is consistent with the reported in vitro activity of FGF4 in maintaining trophoblast stem cells and with the requirement for receptor tyrosine kinase signaling in primitive endoderm formation. Thus, postimplantation lethality of Fgf4(-/-) embryos likely results from the failure of proper differentiation and function of extraembryonic cell types.  相似文献   

12.
13.
The fibroblast growth factor (FGF) signaling family controls a broad spectrum of cellular processes in development and adult tissue homeostasis and function, which is expressed in almost all tissues at all stages. FGF receptor substrate 2 alpha (FRS2alpha) is an adaptor protein that recruits downstream substrates to the FGF receptor (FGFR) tyrosine kinase. Disruption of Frs2alpha gene in mice abrogates activation of the mitogen-activated protein kinase pathway by the FGFR and leads to embryonic lethality at day E7.5 post copulation. To circumvent the embryonic lethality resulting from disruption of the Frs2alpha gene, which hinders further characterization of the role of FRS2alpha in adult tissue function and homeostasis, we generated an Frs2alpha conditional null allele for temporally- and tissue-specific disruption of the Frs2alpha gene. Using gene targeting in mouse embryonic stem cells, we introduced two loxP sites flanking the largest coding exon, exon 5, in the Frs2alpha allele. Our results indicate that the floxed Frs2alpha (Frs2alpha(flox)) allele is a true conditional null allele that encodes wildtype activity and is converted to a null allele after Cre recombinase mediated recombination.  相似文献   

14.
15.
16.
Recent studies have shown that persistent expression of FGF10 in the developing pancreas of transgenic mice results in enhanced and prolonged proliferation of pancreatic progenitors, pancreatic hyperplasia and impaired pancreatic differentiation. These studies have also suggested that FGF10 prevents the differentiation of pancreatic progenitors by maintaining persistent Notch signalling. Here, we provide experimental evidence sustaining the capacity of FGF10 to induce the proliferation of pancreatic precursors, while preventing their differentiation. Using explant cultures of E10.5 isolated dorsal pancreatic epithelium, we found that FGF10 maintained Notch activation and induced the expansion of pancreatic precursors while blocking their differentiation. In addition, by using a gamma-secretase inhibitor, we were able to down-regulate the expression of Hes1, a target gene of the Notch pathway in explant cultures of pancreatic epithelium treated with FGF10. In such explants, the effect of FGF10 on the proliferation and maintenance of pancreatic progenitors was suppressed. These results demonstrate that activation of the Notch pathway is required as a downstream mediator of FGF10 signalling in pancreatic precursor cells.  相似文献   

17.
The preimplantation development of the mammalian embryo encompasses a series of critical events: the transition from oocyte to embryo, the first cell divisions, the establishment of cellular contacts, the first lineage differentiation-all the first subtle steps toward a future body plan. Here, we use microarrays to explore gene activity during preimplantation development. We reveal robust and dynamic patterns of stage-specific gene activity that fall into two major phases, one up to the 2-cell stage (oocyte-to-embryo transition) and one after the 4-cell stage (cellular differentiation). The mouse oocyte and early embryo express components of multiple signaling pathways including those downstream of Wnt, BMP, and Notch, indicating that conserved regulators of cell fate and pattern formation are likely to function at the earliest embryonic stages. Overall, these data provide a detailed temporal profile of gene expression that reveals the richness of signaling processes in early mammalian development.  相似文献   

18.
Fibroblast growth factor receptor 1 (FGFR1) has critical roles in cellular proliferation and differentiation during animal development and adult homeostasis. Here, we show that human Nedd4 (Nedd4‐1), an E3 ubiquitin ligase comprised of a C2 domain, 4 WW domains, and a Hect domain, regulates endocytosis and signalling of FGFR1. Nedd4‐1 binds directly to and ubiquitylates activated FGFR1, by interacting primarily via its WW3 domain with a novel non‐canonical sequence (non‐PY motif) on FGFR1. Deletion of this recognition motif (FGFR1‐Δ6) abolishes Nedd4‐1 binding and receptor ubiquitylation, and impairs endocytosis of activated receptor, as also observed upon Nedd4‐1 knockdown. Accordingly, FGFR1‐Δ6, or Nedd4‐1 knockdown, exhibits sustained FGF‐dependent receptor Tyr phosphorylation and downstream signalling (activation of FRS2α, Akt, Erk1/2, and PLCγ). Expression of FGFR1‐Δ6 in human embryonic neural stem cells strongly promotes FGF2‐dependent neuronal differentiation. Furthermore, expression of this FGFR1‐Δ6 mutant in zebrafish embryos disrupts anterior neuronal patterning (head development), consistent with excessive FGFR1 signalling. These results identify Nedd4‐1 as a key regulator of FGFR1 endocytosis and signalling during neuronal differentiation and embryonic development.  相似文献   

19.
Recently, fibroblast growth factors are identified to play a vital role in the development and progression of human pancreatic cancer. FGF pathway is critical involved in numerous cellular processes through regulation of its downstream targets, including proliferation, apoptosis, migration, invasion, angiogenesis and metastasis. In this review article, we describe recent advances of FGFR signalling pathway in pancreatic carcinogenesis and progression. Moreover, we highlight the available chemical inhibitors of FGFR pathway for potential treatment of pancreatic cancer. Furthermore, we discuss whether targeting FGFR pathway is a novel therapeutic strategy for pancreatic cancer clinical management.  相似文献   

20.
Avian embryos have a remarkable capacity to regulate: when a pre-primitive streak stage embryo is cut into fragments, each fragment can spontaneously initiate formation of a complete embryonic axis. We investigate the signalling pathways that initiate primitive streak formation and the mechanisms that ensure that only a single axis normally forms. As reported previously, an ectopic primitive streak can be induced by misexpression of Vg1 in the marginal zone. We now show that Vg1 induces an inhibitor that travels across the embryo (3 mm distance) in less than 6 hours. We provide evidence that this inhibitor acts early in the cascade of events downstream of Vg1. We also show that FGF signalling is required for primitive streak formation, in cooperation with Nodal and Chordin. We suggest that three sequential inhibitory steps ensure that a single axis develops in the normal embryo: an early inhibitor that spreads throughout the embryo (which can be induced by Vg1), a second inhibition by Cerberus from the underlying hypoblast, and finally a late inhibition from Lefty emitted by the primitive streak itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号