首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was conducted (1) to examine the effect of an acute increase in ambient temperature on the development of porcine day 6 embryos in culture and after transfer to recipient gilts, and (2) to analyze intracellular production of heat shock proteins (hsps). The viability of porcine day 6 embryos following a temporary acute elevation in ambient temperature (at 42°–45.5°C and for 10–180 min) was examined. Synthesis of 70 kDa hsp (hsp 70) and 90 kDa hsp (hsp90) was determined by SDS-PAGE and Western blot analysis in porcine day 6 embryos subjected to heat stresses. Nonheat-stressed embryos were considered as control. Significantly higher numbers of viable nuclei were observed in treatment groups of 42°C-10 min (236.6 ± 71.4; P < 0.05) and 43°C-30 min (276.8 ± 89.4; P < 0.005) compared to control (173.9 ± 53.9). The 42°C-180 min group (158.0 ± 27.1 μm) had a greater increase in diameter after 24 hr in culture following heat stress compared to control (82.5 ± 47.3 μm), while heat stress with 43°C for ≧60 min, 44°–44.5°C for ≧30 min, or 45°-45.5°C for ≧10 min impaired their survival, as assessed by differences in number of viable nuclei. The embryos subjected to heat stresses under the conditions of 42°C-180 min, 43°C-10 min, 43°C-30 min, 44°C-10 min, or 45°C-10 min developed to normal piglets after transfer to recipient gilts. Overall pregnancy rate was 75% (6/8), and farrowing rate 62.5% (5/8). Of heat-stressed embryos transferred, 59% (36/61) developed to normal piglets. Heat-stress conditions of 42°C for 180 min, 43°C for 30 min, 44°C for 10 min, and 45°C for 10 min were determined as critical with respect to the in vitro and in vivo survival of porcine embryos. Porcine day 6 embryos constitutively synthesized hsp70 even without heat stress, while hsp90 was detected only at trace level. Neither hsp70 nor hsp90 levels increased in the embryos subjected to heat stresses. In conclusion, porcine day 6 embryos could continue to develop in vivo or during in vitro culture after exposure to acute and temporary rise in temperature. However, no increase of hsp70 and hsp90 was observed in the heat-stressed porcine embryos, while hsp70 was detected in the nonheat-stressed porcine embryos. The precise mechanism of the thermotolerance was unclear. © 1996 Wiley-Liss, Inc.  相似文献   

2.
The Mr 90,000 protein associated with steroid receptors in their non-transformed state has been identified as a heat shock protein (hsp90) but the relationship between hsp90 binding and receptor function is still poorly understood. In this work, we have obtained and characterized one monoclonal anti-rabbit hsp90 antibody (7C10), among more than 2000 wells plated. This antibody was able to complex both free and rabbit uterine progesterone receptor-associated hsp90 as demonstrated by sedimentation analysis on sucrose gradients. As assessed by ELISA, 7C10 displayed a high binding affinity for hsp90 ( 4 nM). A standardized and specific competitive binding assay was developed for accurate quantification of hsp90 in rabbit tissues including reticulocyte lysate. 7C10 also permitted immunolocalization of hsp90 in various rabbit tissues. In Western blot, the monoclonal antibody recognized a single polypeptide band of Mr 90,000 in crude or purified rabbit preparations but failed to cross-react with any other mammalian or avian hsp90. These findings suggest that hsp90, a highly conserved protein, is a weak immunogen and elicits a strict species specific immunological response. Owing to its high affinity and specificity for rabbit hsp90, the monoclonal antibody 7C10 was used for purification and total depletion of hsp90 from the reticulocyte lysate, an efficient system for in vitro receptor translation and reconstitution studies. Thus, 7C10 represents a new powerful tool to further investigate the importance of hsp90 in steroid hormone receptor function.  相似文献   

3.
A polyclonal antibody, R2, was raised against a fusion protein consisting of a portion of plant hsp90 fused to the trpE protein of Escherichia coli. This antibody was found to be specific towards plant hsp90, showing little or no cross-reactivity with mouse and human hsp90 proteins. The R2 antibody identified an 83 kDa protein as the hsp90 homologue in cytosolic extracts of several dicot and monocot plants. Two-dimensional gel electrophoresis indicated that at least two different isoforms of hsp90 are expressed in Brassica napus seedlings. An examination of the native state of hsp90 by non-denaturing gel electrophoresis showed that this protein exists as a monomer, dimer and as a high-molecular-mass complex of ca. 680 kDa in cell extracts of spinach cotyledons and leaves, B. napus seedlings and wheat germ. Native gel analysis and cross-linking studies of purified hsp90 showed that plant hsp90 exists predominantly as a monomer. When 35S-labelled B. napus cytosolic extracts were immunoprecipitated with the R2 antiserum, hsp90 and two additional proteins with approximate molecular masses of 49 and 45 kDa were detected in the immunoprecipitates. These results are consistent with the idea that hsp90:protein heterocomplexes exist in plant cells.  相似文献   

4.
Vascular soluble guanylate cyclase (sGC) exists in multimeric complexes with endothelial nitric oxide (NO) synthase (eNOS) and heat shock protein 90 (hsp90). Whereas disruption of hsp90-eNOS complexes clearly attenuates eNOS-dependent vascular relaxation, the contribution of sGC-hsp90 complexes to eNOS- or NO donor-dependent relaxations remains unclear. Isolated rat thoracic aortic rings were preincubated with structurally diverse hsp90 binding inhibitors, radicicol (RA) or geldanamycin (GA), or vehicle for 0.5, 1, or 15 h. Preconstricted vessels were exposed to ACh, 8-bromo-cGMP (8-BrcGMP), forskolin, or one of three NO donors: nitroglycerin (NTG), sodium nitroprusside, or spermine NONOate (SNN). Both RA and GA inhibited endothelium-dependent relaxations dose dependently. Indomethacin or the antioxidant tiron did not affect the inhibition of ACh-induced relaxations by GA. Long-term (15 h) exposure to RA inhibited all NO donor-induced relaxations; however, GA inhibited SNN-induced relaxation only. The effects of GA and RA appeared to be selective because 15-h treatment with either agent did not affect forskolin-induced relaxations and only slightly decreased 8-BrcGMP-induced relaxations. Similarly to their effects on NO-donor-induced relaxation, 15-h exposure to RA, but not to GA, decreased hsp90-bound sGC protein expression and NTG-stimulated cGMP formation in aortic rings, whereas RA more than GA reduced SNN-stimulated cGMP formation. We conclude that RA, much more so than GA, selectively inhibits sGC-dependent relaxations of aortic rings by reducing sGC expression, disrupting sGC-hsp90 complex formation and decreasing cGMP formation. These studies suggest that hsp90 regulates both eNOS- and sGC-dependent relaxations.  相似文献   

5.
Hsp90 and p50(cdc37) provide a poorly understood biochemical function essential to certain protein kinases, and recent models describe p50(cdc37) as an exclusive hsp90 cohort which links hsp90 machinery to client kinases. We describe here the recovery of p50(cdc37) in immunoadsorptions directed against the hsp90 cohorts FKBP52, cyp40, p60HOP, hsp70, and p23. Additionally, monoclonal antibodies against FKBP52 coadsorb maturation intermediates of the hsp90-dependent kinases p56(lck) and HRI, and the presence of these maturation intermediates significantly increases the representation of p50(cdc37) and hsp90 on FKPB52 machinery. Although the native heterocomplex between hsp90 and p50(cdc37) is salt-labile, their dynamic interactions with kinase substrates produce kinase-chaperone heterocomplexes which are highly salt-resistant. The hsp90 inhibitor geldanamycin does not directly disrupt the native association of hsp90 with p50(cdc37) per se, but does result in the formation of salt-labile hsp90-kinase heterocomplexes which lack the p50(cdc37) cohort. We conclude that p50(cdc37) does not simply serve as a passive structural bridge between hsp90 and its kinase substrates; instead, p50(cdc37) is a nonexclusive hsp90 cohort which responds to hsp90's nucleotide-regulated conformational switching during the generation of high-affinity interactions within the hsp90-kinase-p50(cdc37) heterocomplex.  相似文献   

6.
7.
Heat shock protein 90 (hsp90) is a molecular chaperone responsible for protein folding and maturation in vivo. Interaction of hsp90 with human glutamyl-prolyl-tRNA synthetase (EPRS) was found by genetic screening, co-immunoprecipitation, and in vitro binding experiments. This interaction was sensitive to the hsp90 inhibitor, geldanamycin, and also ATP, suggesting that the chaperone activity of hsp90 is required for interaction with EPRS. Interaction of EPRS with hsp90 was targeted to the region of three tandem repeats linking the two catalytic domains of EPRS that is also responsible for the interaction with isoleucyl-tRNA synthetase (IRS). Interaction of EPRS and IRS also depended on the activity of hsp90, implying that their association was mediated by hsp90. EPRS and IRS form a macromolecular protein complex with at least six other tRNA synthetases and three cofactors. hsp90 preferentially binds to most of the complex-forming enzymes rather than those that are not found in the complex. In addition, inactivation of hsp90 interfered with the in vivo incorporation of the nascent aminoacyl-tRNA synthetases into the multi-ARS complex. Thus, hsp90 appears to mediate protein-protein interactions of mammalian tRNA synthetases.  相似文献   

8.
The highly coordinated interactions of several molecular chaperones, including hsp70 and hsp90, are required for the folding and conformational regulation of a variety of proteins in eukaryotic cells, such as steroid hormone receptors and many other signal transduction regulators. The protein called Hop serves as an adaptor protein for hsp70 and hsp90 and is thought to optimize their functional cooperation. Here we characterize the assembly of the hsp70-Hop-hsp90 complex and reveal interactions that cause conformational changes between the proteins in the complex. We found that hsp40 plays an integral role in the assembly by enhancing the binding of hsp70 to the Hop complex. This is accomplished by stimulating the conversion of hsp70-ATP to hsp70-ADP, the hsp70 conformation favored for Hop binding. The hsp70-Hop-hsp90 complex is highly dynamic, as has been observed previously for hsp90 in its interaction with client proteins. Nonetheless, hsp90 binds with high affinity to Hop (K(d) = 90 nm), and this binding is not affected by hsp70. hsp70 binds with lower affinity to Hop (K(d) = 1.3 microm) on its own, but this affinity is increased (K(d) = 250 nm) in the presence of hsp90. hsp90 also reduces the number of hsp70 binding sites on the Hop dimer from two sites in the absence of hsp90 to one site in its presence. Hop can inhibit the ATP binding and p23 binding activity of hsp90, yet this can be reversed if hsp70 is present in the complex. Taken together, our results suggest that the assembly of hsp70-Hop-hsp90 complexes is selective and influences the conformational state of each protein.  相似文献   

9.
10.
Inhibition of protein synthesis initiation in rabbit reticulocyte lysates occurs in response to a variety of conditions including heme deficiency, addition of oxidants, and heat stress. The inhibition of translation occurs due to the activation of a heme-regulated protein kinase (HRI), which specifically phosphorylates the alpha-subunit of the eukaryotic initiation factor eIF-2. How the activation of HRI in hemin-supplemented lysate occurs in response to oxidants and heat stress is not well understood. Recently, the 90-kDa heat shock protein (hsp 90) has been reported to co-purify with HRI activity. In this report, we have used monoclonal antibodies directed against hsp 90 to determine whether HRI and hsp 90 are functionally associated in the reticulocyte lysate in situ. The AC88 antibody recognizes only free hsp 90 and only bound significant amounts of hsp 90 upon prolonged incubation in the absence of heme or upon N-ethylmaleimide treatment of hemin-supplemented lysates. HRI activity is not absorbed by the AC88 antibody. The 8D3 monoclonal antibody, which binds to both free hsp 90 and hsp 90 complexed to steroid hormone receptors, absorbed the hsp 90 present in hemin-supplemented lysates and reduced the HRI activity by 70-95%. Progressively more HRI activity is not adsorbed by the 8D3 antibody the longer the reticulocyte lysate is incubated in the absence of hemin. The HRI that is adsorbed from heme-deficient lysates by the 8D3 antibody is also more active. The sedimentation rate of HRI was analyzed by glycerol gradient centrifugation. HRI present in hemin-supplemented lysate was found to have a sedimentation coefficient of approximately 7.5-8 S and was adsorbed from fractions by the 8D3 antibody in association with hsp 90. A second peak of HRI activity with a sedimentation coefficient of approximately 4.5-5 S was detected upon glycerol gradient centrifugation of heme-deficient lysates. Upon Western blot analysis, heme-deficient lysates were found to have less hsp 90 in the 7.5-8 S region of glycerol gradients than hemin-supplemented lysates. The data suggest that HRI is associated with hsp 90 in an inactive form in hemin-supplemented lysates and dissociates from hsp 90 upon activation. There also appears to be an intermediate of active HRI which is associated with hsp 90 or which can reversibly associate with hsp 90. Similarities between the stages of HRI activation and steroid hormone receptor activation and transformation are discussed.  相似文献   

11.
When a cell encounters external stressors, such as lack of nutrients, elevated temperatures, changes in pH or other stressful environments, a key set of evolutionarily conserved proteins, the heat shock proteins (hsps), become overexpressed. Hsps are classified into six major families with the hsp90 family being the best understood; an increase in cell stress leads to increased levels of hsp90, which leads to cellular protection. A hallmark of hsp90 inhibitors is that they induce a cell rescue mechanism, the heat shock response. We define the unique molecular profile of a compound (SM145) that regulates hormone receptor protein levels through hsp90 inhibition without inducing the heat shock response. Modulation of the binding event between heat shock protein 90 and the immunophilins/homologs using SM145, leads to a decrease in hormone receptor protein levels. Unlike N-terminal hsp90 inhibitors, this hsp90 inhibitor does not induce a heat shock response. This work is proof of principle that controlling hormone receptor expression can occur by inhibiting hsp90 without inducing pro-survival protein heat shock protein 70 (hsp70) or other proteins associated with the heat shock response. Innovatively, we show that blocking the heat shock response, in addition to hsp90, is key to regulating hsp90-associated pathways.  相似文献   

12.
13.
Heat shock protein 90 (hsp90) is a chaperone required for the proper folding and trafficking of many proteins involved in signal transduction. We tested whether hsp90 plays a role as a chaperone for GC-A, the membrane guanylate cyclase that acts as a receptor for atrial natriuretic peptide (ANP). When cultured cells expressing recombinant GC-A were treated with geldanamycin, an inhibitor of hsp90 function, the ANP-stimulated production of cyclic GMP was inhibited. This suggested that hsp90 was required for GC-A processing and/or stability. A physical association between hsp90 and GC-A was demonstrated in coimmunoprecipitation experiments. Treatment with geldanamycin disrupted this association and led to the accumulation of complexes containing GC-A and heat shock protein 70 (hsp70). Protein folding pathways involving hsp70 and hsp90 include several pathway-specific co-chaperones. Complexes between GC-A and hsp90 contained the co-chaperone p50(cdc37), typically found associated with protein kinase.hsp90 heterocomplexes. GC-A immunoprecipitates did not contain detectable amounts of Hop, FKBP51, FKBP52, PP5, or p23, all co-chaperones found in hsp90 complexes with other signaling proteins. The association of hsp90 and p50(cdc37) with GC-A was dependent on the kinase homology domain of this receptor but not on its ANP-binding, transmembrane, or guanylate cyclase domains. The data suggest that GC-A is regulated by hsp90 complexes similar to those involved in the maturation of protein kinases.  相似文献   

14.
The hsp90-based chaperone machinery is implicated in numerous cellular processes including signal transduction, genomic silencing, and protein degradation. Hop is a component of the animal hsp90 multichaperone complex, whose function is to link the two chaperones, hsp90 and hsp70. Currently there exists little information on a plant Hop homologue. Herein it is reported that a 70-kDa protein in wheat germ lysate is associated with hsp90 and hsp70 and that this protein is a wheat homologue of Hop. It is also shown that, in addition to being detected in complexes, the wheat Hop as well as the previously identified immunophilin FKBP73, can bind directly to purified plant hsp90. In the steroid receptor folding assay, the wheat Hop was not detected in receptor complexes, but the wheat immunophilin FKBP73 could be detected when mammalian p23 was added to the plant lysate. The present results identify two hsp90-binding proteins and provide a useful framework on which to further investigate their functions.  相似文献   

15.
Non-transformed steroid receptors have an approximately 8S sedimentation coefficient that corresponds to an oligomeric structure of 250-300 kd which includes a non-hormone binding 90-kd protein. A monoclonal antibody BF4 raised against the purified, molybdate-stabilized, 8S progesterone receptor (8S-PR) from chick oviduct, recognizes 8S forms of all steroid hormone receptors. BF4 was found specific for a 90-kd protein present in great abundance in all chicken tissues, including that present in 8S-forms of steroid receptors. Here, using immunological and biochemical techniques, we demonstrate that this ubiquitous BF4-positive 90-kd protein is in fact the chicken 90 kd heat-shock protein (hsp 90): it increased in heat-shocked chick embryo fibroblasts, and displayed identical migration in two-dimensional gel electrophoresis and the same V8 peptide map as the already described hsp 90. We discuss the possibility that the interaction between hsp 90 and steroid hormone-binding subunits may play a role in keeping the receptor in an inactive form.  相似文献   

16.
17.
Changes in protein synthesis induced by heat shock of Strongylocentrotus purpuratus gastrulae were analyzed bt two-dimensional electrophoresis. Hyperthermia induces the synthesis of polypeptides having molecular masses of 90, 70, 50, 40, and 38 kDa. One of these, hsp90, appears as a pair of polypeptides which comigrates with proteins synthesized at normal temperature in eggs and embryos; these comigrating spots produce indistinguishable patterns upon electrophoretic analysis of partial V8 protease digests, indicating that hsp90 is synthesized throughout embryogenesis. The relative rate of incorporation of methionine into hsp90 is low in eggs and zygotes, but increases abruptly in morulae, constituting a rare and striking change in protein synthesis during early development. Cell-free translation analyses indicate that most of the mRNA encoding hsp90 resides in the pool of free ribonucleoprotein particles in eggs and early embryos, but shifts to polysomes by the 64-cell stage while remaining constant in mass. Thus the increase in synthesis of hsp90 appears to be via the selective activation of translation of a stored maternal mRNA. The shift of hsp90 mRNA to polysomes is accompanied by polyadenylation. Heat shock of eggs or zygotes did not result in translational activation of hsp90 mRNA. The sea urchin hsp90 doublet of spots comigrates with hsp90 induced by heat shock of chicken embryo fibroblasts, a conserved protein abundant in many cells of a variety of species.  相似文献   

18.
Tissue-specific differences were apparent in the constitutive level of hsp90 in various body tissues of the unstressed rabbit. Western blotting with monoclonal antibody 29A revealed very low levels in muscle and highest levels in neural regions (cerebellum, cerebral hemispheres, and retina) and in testes and thymus. Intermediate levels were apparent in other tissues such as liver, kidney, heart, and small intestine. Following hyperthermia, induction of hsp90 was not detected with 1-D Western blotting in tissues which demonstrated high constitutive levels; however, elevations were noted in tissues which showed lower constitutive amounts of the protein, such as kidney, heart, and muscle. Immunocytochemical studies revealed that hsp90 is preferentially localized to neuronal cell populations in the rabbit brain and that this pattern does not alter following hyperthermic conditions which result in glial induction of hsp70. In kidney, where constitutive levels of hsp90 are lower than in brain, an induction of hsp90 was noted in renal tubules following hyperthermia.  相似文献   

19.
Lens apoptosis plays a central role in cavefish eye degeneration. Heat shock proteins (hsps) can regulate apoptosis; therefore, we examined the relationship between constitutive hsp70 and hsp90 expression and lens apoptosis. The model system is Astyanax mexicanus, a teleost species consisting of an eyed surface-dwelling (surface fish) form and numerous blind cave-dwelling (cavefish) forms. Optic primordia are formed in the cavefish embryo but they subsequently undergo lens apoptosis, arrest in development and degenerate. Astyanax hsp90 and hsp70 DNAs were isolated to use as probes to compare gene expression during surface fish and cavefish development. Hsp90beta, which encodes one of two hsp90 isoforms, was not expressed in the surface fish or cavefish lens, whereas hsp70 was expressed in the lens of both forms, suggesting that neither is directly involved in lens apoptosis. In contrast, hsp90alpha, the other hsp90 isoform, was expressed in the cavefish but not the surface fish lens. Hsp90alpha expression peaked shortly before the beginning of lens apoptosis in three convergent cavefish populations, suggesting a close relationship with lens apoptosis. The absence of hsp90beta in the lens allowed us to use geldanamycin and radicicol, specific inhibitors of hsp90 chaperone function, to determine whether lens cell death requires hsp90alpha expression. Both inhibitors blocked TUNEL labeling in the cavefish lens, suggesting that hsp90alpha is required for apoptosis. In contrast to their effects on the lens, these inhibitors induced TUNEL labeling in the surface epidermis, presumably due to effects on hsp90beta function, implying that the two-hsp90 isoforms may have contrasting roles in cell survival. We conclude that hsp90alpha plays a novel role in lens apoptosis and cavefish eye degeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号