首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
To understand the mechanism and molecular properties of the tonoplast-type H+-translocating ATPase, we have studied the effect of Cl, NO3, and 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid (DIDS) on the activity of the electrogenic H+-ATPase associated with low-density microsomal vesicles from oat roots (Avena sativa cv Lang). The H+-pumping ATPase generates a membrane potential (Δψ) and a pH gradient (ΔpH) that make up two interconvertible components of the proton electrochemical gradient (μh+). A permeant anion (e.g. Cl), unlike an impermeant anion (e.g. iminodiacetate), dissipated the membrane potential ([14C]thiocyanate distribution) and stimulated formation of a pH gradient ([14C]methylamine distribution). However, Cl-stimulated ATPase activity was about 75% caused by a direct stimulation of the ATPase by Cl independent of the proton electrochemical gradient. Unlike the plasma membrane H+-ATPase, the Cl-stimulated ATPase was inhibited by NO3 (a permeant anion) and by DIDS. In the absence of Cl, NO3 decreased membrane potential formation and did not stimulate pH gradient formation. The inhibition by NO3 of Cl-stimulated pH gradient formation and Cl-stimulated ATPase activity was noncompetitive. In the absence of Cl, DIDS inhibited the basal Mg,ATPase activity and membrane potential formation. DIDS also inhibited the Cl-stimulated ATPase activity and pH gradient formation. Direct inhibition of the electrogenic H+-ATPase by NO3 or DIDS suggest that the vanadate-insensitive H+-pumping ATPase has anion-sensitive site(s) that regulate the catalytic and vectorial activity. Whether the anion-sensitive H+-ATPase has channels that conduct anions is yet to be established.  相似文献   

2.
Anion-sensitive, h-pumping ATPase in membrane vesicles from oat roots   总被引:20,自引:18,他引:2       下载免费PDF全文
H+-pumping ATPases were detected in microsomal vesicles of oat (Avena sativa L. var Lang) roots using [14C]methylamine distribution or quinacrine fluorescent quenching. Methylamine (MeA) accumulation into vesicles and quinacrine quench were specifically dependent on Mg,ATP. Both activities reflected formation of a proton gradient (ΔpH) (acid inside) as carbonyl cyanide m-chlorophenylhydrazone, nigericin (in the presence of K+), or gramicidin decreased MeA uptake or increased quinacrine fluorescence. The properties of H+ pumping as measured by MeA uptake were characterized. The Kmapp for ATP was about 0.1 millimolar. Mg,GTP and Mg, pyrophosphate were 19% and 30% as effective as Mg,ATP. MeA uptake was inhibited by N,N′-dicyclohexylcarbodiimide and was mostly insensitive to oligomycin, vanadate, or copper. ATP-dependent MeA was stimulated by anions with decreasing order of potency of Cl > Br > NO3 > SO42−, iminodiacetate, benzene sulfonate. Anion stimulation of H+ pumping was caused in part by the ability of permeant anions to dissipate the electrical potential and in part by a specific requirement of Cl by a H+ -pumping ATPase. A pH gradient, probably caused by a Donnan potential, could be dissipated by K+ in the presence or absence of ATP. MeA uptake was enriched in vesicles of relatively low density and showed a parallel distribution with vanadate-insensitive ATPase activity on a continuous dextran gradient. ΔpH as measured by quinacrine quench was partially vanadate-sensitive. These results show that plant membranes have at least two types of H+ -pumping ATPases. One is vanadate-sensitive and probably enriched in the plasma membrane. One is vanadate-resistant, anion-sensitive and has many properties characteristic of a vacuolar ATPase. These results are consistent with the presence of electrogenic H+ pumps at the plasma membrane and tonoplast of higher plant cells.  相似文献   

3.
Microsomal membranes isolated from red beet (Beta vulgaris L.) storage tissue were found to contain high levels of ionophore-stimulated ATPase activity. The distribution of this ATPase activity on a continuous sucrose gradient showed a low density peak (1.09 grams per cubic centimeter) that was stimulated over 400% by gramicidin and coincided with a peak of NO3-sensitive ATPase activity. At higher densities (1.16-1.18 grams per cubic centimeter) a shoulder of gramicidin-stimulated ATPase that coincided with a peak of vanadate-sensitive ATPase was apparent. A discontinuous sucrose gradient of 16/26/34/40% sucrose (w/w) was effective in routinely separating the NO3-sensitive ATPase (16/26% interface) from the vanadate-sensitive ATPase (34/40% interface). Both membrane fractions were shown to catalyze ATP-dependent H+ transport, with the transport process showing the same differential sensitivity to NO3 and vanadate as the ATPase activity.

Characterization of the lower density ATPase (16/26% interface) indicated that it was highly stimulated by gramicidin, inhibited by KNO3, stimulated by anions (Cl > Br > acetate > HCO3 > SO42−), and largely insensitive to monovalent cations. These characteristics are very similar to those reported for tonoplast ATPase activity and a tonoplast origin for the low density membrane vesicles was supported by comparison with isolated red beet vacuoles. The membranes isolated from the vacuole preparation were found to possess an ATPase with characteristics identical to those of the low density membrane vesicles, and were shown to have a peak density of 1.09 grams per cubic centimeter. Furthermore, following osmotic lysis the vacuolar membranes apparently resealed and ATP-dependent H+ transport could be demonstrated in these vacuole-derived membrane vesicles. This report, thus, strongly supports a tonoplast origin for the low density, anion-sensitive H+-ATPase and further indicates the presence of a higher density, vanadate-sensitive, H+-ATPase in the red beet microsomal membrane fraction, which is presumably of plasma membrane origin.

  相似文献   

4.
The initial rate of quenching of quinacrine fluorescence was used to monitor Mg:ATP-dependent H+-pumping in membrane vesicles from corn (Zea mays L. cv WF9 × MO17) roots and obtain a preparation in which vanadate-sensitive H+-pumping could be observed. Separation of membranes on a linear sucrose density gradient resulted in two distinct peaks of H+-pumping activity: a major one, at density 1.11 grams per cubic centimeter, was sensitive to NO3 and resistant to vanadate, while a minor one, at density 1.17 grams per cubic centimeter, was substantially resistant to NO3 and sensitive to vanadate. A membrane fraction enriched in the vanadate-sensitive H+-pump could be obtained by washing microsomes prepared in the presence of 10% glycerol with 0.25 molar KI. The kinetics of inhibition of H+-pumping by vanadate in this membrane preparation indicated that most of the H+-pumping activity in this fraction is sensitive to inhibition by vanadate, 50% inhibition being reached at about 60 micromolar vanadate. This value is fairly close to that observed for inhibition by vanadate of the ATPase activity in similar experimental conditions (40 micromolar). The inhibitor sensitivity, divalent cation dependence, pH optimum (6.5), and Km for ATP (0.7 millimolar) of the H+-pumping activity match quite closely those reported for the plasma membrane ATPase of corn roots and other plant materials.  相似文献   

5.
Membranes from homogenates of growing and of dormant storage roots of red beet (Beta vulgaris L.) were centrifuged on linear sucrose gradients. Vanadate-sensitive ATPase activity, a marker for plasma membrane, peaked at 38% to 40% sucrose (1.165-1.175 grams per cubic centimeter) in the case of growing material but moved to as low as 30% sucrose (1.127 grams per cubic centimeter) during dormancy.

A band of nitrate-sensitive ATPase was found at sucrose concentrations of 25% to 28% or less (around 1.10 grams per cubic centimeter) for both growing and dormant material. This band showed proton transport into membrane vesicles, as measured by the quenching of fluorescence of acridine orange in the presence of ATP and Mg2+. The vesicles were collected on a 10/23% sucrose step gradient. The phosphate hydrolyzing activity was Mg dependent, relatively substrate specific for ATP (ATP > GTP > UTP > CTP = 0) and increased up to 4-fold by ionophores. The ATPase activity showed a high but variable pH optimum, was stimulated by Cl, but was unaffected by monovalent cations. It was inhibited about 50% by 10 nanomolar mersalyl, 20 micromolar N,N′-dicyclohexylcarbodiimide, 80 micromolar diethylstilbestrol, or 20 millimolar NO3; but was insensitive to molybdate, vanadate, oligomycin, and azide. Proton transport into vesicles from the 10/23% sucrose interface was stimulated by Cl, inhibited by NO3, and showed a high pH optimum and a substrate specificity similar to the ATPase, including some proton transport driven by GTP and UTP.

The low density of the vesicles (1.10 grams per cubic centimeter) plus the properties of H+ transport and ATPase activity are similar to the reported properties of intact vacuoles of red beet and other materials. We conclude that the low density, H+-pumping ATPase of red beets originated from the tonoplast. Tonoplast H+-ATPases with similar properties appear to be widely distributed in higher plants and fungi.

  相似文献   

6.
H+-pumping adenosinetriphosphatases (ATPases, EC 3.6.1.3) were demonstrated in sealed microsomal vesicles of tobacco callus. Quinacrine fluorescence quenching was induced specifically by MgATP and stimulated by EGTA and Cl?. Fluorescence quenching reflected a relative measure of pH gradient formation (inside acid), as it could be reversed by gramicidin (an H+/cation conductor) or 10 mM NH4Cl (an uncoupler). H+ pumping was inhibited by tributyltin (an ATPase inhibitor) and sodium vanadate, but it was insensitive to oligomycin or fusicoccin. The vanadate concentration required to inhibit pH gradient formation was similar to that needed to inhibit KCl-stimulated Mg2+-ATPase activity and generation of a membrane potential (measured by ATP-dependent 35SCN? uptake). About 45% of all three activities (ATPase, pH gradient, membrane potential generation) were vanadate-insensitive, supporting the idea that non-mitochondrial membranes of plants have at least two types of electrogenic H+ pump.A vanadate-insensitive, H+-pumping ATPase previously shown by methylamine accumulation was characterized to be anion-sensitive and possibly enriched in vacuolar membranes (Churchill, K.A. and Sze, H. (1983) Plant Physiol. 71, 610–617). Yet, pH gradient formation determined by quinacrine fluorescence quenching was decreased by monovalent cations with a sequence K+, Rb+, Na+ > Cs+,Li+> choline, bisTris-propane. Since K+ stimulated ATPase activity more than Bistris-propane, K+ appeared to collapse formation of the pH gradient by an H+/K+ countertransport. The sensitivity to vanadate and K+ provides evidence that the plasma-membrane ATPase is an electrogenic H+ pump.  相似文献   

7.
Chloride transport, presumably via a Cl-2H+ co-transport system, was investigated in Chara corallina. At pH 6.5, the control influx (3.1 picomoles per centimeter2 per second) was stimulated 4-fold by an 18-hour Cl starvation. The stimulated influx was inhibited to 4.7 picomoles per centimeter2 per second after a 60-minute pre-exposure to 0.5 millimolar 4,4′-diisothiocyano-2,2′-disulfonic acid stilbene (DIDS). This compares with a nonsignificant inhibition of the control under similar conditions. At 2 millimolar DIDS, both stimulated and control influx were inhibited to values of 1.1 and 2.2 picomoles per centimeter2 per second, respectively; in all cases, DIDS inhibition was reversible. Over the pH range 4.8 to 8.5, the control and DIDS-inhibited influx showed only slight pH sensitivity; in contrast, the stimulated flux was strongly pH dependent (pH 6.5 optimum). Inasmuch as changes in pH alter membrane potential, N-ethylmaleimide was used to depolarize the membrane; this had no effect on Cl influx. A transient depolarization of the membrane (about 20 millivolts) was observed on restoration of Cl to starved cells. The membrane also depolarized transiently when starved cells were exposed to 0.5 millimolar DIDS, but the depolarization associated with Cl restoration was inhibited by a 40-minute pretreatment with DIDS. Exposure of control cells to DIDS caused only a small hyperpolarization (about 7 millivolts). DIDS may have blocked Cl influx by inhibiting the putative plasmalemma H+-translocating ATPase. Histochemical studies on intact cells revealed no observable effect of DIDS on plasmalemma ATPase activity. However, DIDS application after fixation resulted in complete inhibition of ATPase activity.

The differential sensitivity of the stimulated and control flux to inhibition by DIDS may reflect an alteration of transport upon stimulation, but could also result from differences in pretreatment. The stimulated cells were pretreated with DIDS in the absence of Cl, in contrast to the presence of Cl during pretreatment of controls. The differential effect could result from competition between Cl and DIDS for a common binding site. Our histochemical ATPase results indicate that Cl transport and membrane ATPase are separate systems, and the latter is only inhibited by DIDS from the inside of the cell.

  相似文献   

8.
Schumaker KS  Sze H 《Plant physiology》1985,79(4):1111-1117
Two types of ATP-dependent calcium (Ca2+) transport systems were detected in sealed microsomal vesicles from oat roots. Approximately 80% of the total Ca2+ uptake was associated with vesicles of 1.11 grams per cubic centimeter and was insensitive to vanadate or azide, but inhibited by NO3. The remaining 20% was vanadate-sensitive and mostly associated with the endoplasmic reticulum, as the transport activity comigrated with an endoplasmic reticulum marker (antimycin A-insensitive NADH cytochrome c reductase), which was shifted from 1.11 to 1.20 grams per cubic centimeter by Mg2+.

Like the tonoplast H+-ATPase activity, vanadate-insensitive Ca2+ accumulation was stimulated by 20 millimolar Cl and inhibited by 10 micromolar 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid or 50 micromolar N,N′-dicyclohexylcarbodiimide. This Ca2+ transport system had an apparent Km for Mg-ATP of 0.24 millimolar similar to the tonoplast ATPase. The vanadate-insensitive Ca2+ transport was abolished by compounds that eliminated a pH gradient and Ca2+ dissipated a pH gradient (acid inside) generated by the tonoplast-type H+-ATPase. These results provide compelling evidence that a pH gradient generated by the H+-ATPase drives Ca2+ accumulation into right-side-out tonoplast vesicles via a Ca2+/H+ antiport. This transport system was saturable with respect to Ca2+ (Km apparent = 14 micromolar). The Ca2+/H+ antiport operated independently of the H+-ATPase since an artifically imposed pH gradient (acid inside) could also drive Ca2+ accumulation. Ca2+ transport by this system may be one major way in which vacuoles function in Ca2+ homeostasis in the cytoplasm of plant cells.

  相似文献   

9.
Sealed membrane vesicles were isolated from homogenates of sugarbeet (Beta vulgaris L.) taproot by a combination of differential centrifugation, extraction with KI, and dextran gradient centrifugation. Relative to the KI-extracted microsomes, the content of plasma membranes, mitochondrial membranes, and Golgi membranes was much reduced in the final vesicle fraction. A component of ATPase activity that was inhibited by nitrate co-enriched with the capacity of the vesicles to form a steady state pH gradient during the purification procedure. This suggests that the nitrate-sensitive ATPase may be involved in driving H+-transport, and this is consistent with the observation that H+-transport, in the final vesicle fraction was inhibited by nitrate. Proton transport in the sugarbeet vesicles was substrate specific for ATP, insensitive to sodium vanadate and oligomycin but was inhibited by diethylstilbestrol and N,N′-dicyclohexylcarbodiimide. The formation of a pH gradient in the vesicles was enhanced by halide ions in the sequence I > Br > Cl while F was inhibitory. These stimulatory effects occur from both a direct stimulation of the ATPase by anions and a reduction in the vesicle membrane potential. In the presence of Cl, alkali cations reduce the pH gradient relative to that observed with bis-tris-propane, possibly by H+/alkali cation exchange. Based upon the properties of the H+-transporting vesicles, it is proposed that they are most likely derived from the tonoplast so that this vesicle preparation would represent a convenient system for studying the mechanism of transport at this membrane boundary.  相似文献   

10.
The ATP-dependent proton-pumping activity of soybean (Glycine max L.) root microsomes is predominantly nitrate sensitive and presumably derived from the tonoplast. We used microsomes to characterize anion effects on proton pumping of the tonoplast vesicles using two distinctly different techniques.

Preincubation of the vesicles with nitrate caused inhibition of proton pumping and ATPase activity, with similar concentration dependence. Fluoride, which preferentially inhibits the plasma membrane ATPase, inhibited ATPase activity strongly at concentrations which did not affect proton pumping activity.

Addition of potassium salts, after a steady-state pH gradient is established in the absence of such salts, caused an increased pH gradient which was due to alleviation of Δ Ψ and subsequent increased influx of H+ into these vesicles. This anion-induced increase in the pH gradient could be used as a measure of the relative anion permeabilities, which were of the order Br = NO3 > Cl SO42−. Phosphate and fluoride caused no increase in the pH gradient. Since the concentration dependence of KCl- and KNO3-induced quenching exhibited a saturable component, and since H+ uptake was increased by only certain anions, the data suggest that there may be a relatively specific anion channel associated with tonoplast-derived vesicles.

  相似文献   

11.
The stimulation by K+ of the initial rate of H+-pumping by ATPase was studied in native plasmalemma (Zea mays L. var Mona) vesicles and in reconstituted vesicles with enzyme purified on a glycerol gradient. In reconstituted vesicles, a very high H+-pumping rate (200,000% quenching per minute per milligram protein) was obtained with 9-amino-6-chloro-2-methoxyacridine provided that the pump was short-circuited by K+-valinomycin. A constant ionic strength was used to prevent indirect stimulation by the electrostatic effects of K+ salts. Indirect stimulation of H+-pumping by the short-circuiting effect of internal K+, could be abolished by using the permeant anions NO3 and Br in native, but not in reconstituted vesicles. In both materials, half-stimulation of the H+-pumping by K+ was observed at about 5 millimolar. The same stimulation was obtained when K+ was present only in the external solution or when it was present both outside and inside the vesicles. It was concluded that the stimulating effect of K+ on the H+-pumping evidenced in these experiments on both native and reconstituted vesicles was due to a direct effect of the cation on the cytoplasmic face of the ATPase. These results are discussed within the context of the hypothesis of an active K+ transport driven by the ATPase through a direct H+/K+ exchange mechanism.  相似文献   

12.
Characterization of a NO(3)-Sensitive H-ATPase from Corn Roots   总被引:16,自引:16,他引:0  
When assayed in the presence of azide, NO3 was shown to be a specific inhibitor of a proton-translocating ATPase present in corn (Zea mays L. cv WF9 × M017) root microsomal membranes. The distribution of the NO3-sensitive ATPase on sucrose gradients and its general characteristics are similar to those previously reported for the anion-stimulated H+-ATPase of corn roots believed to be of tonoplast origin. An ATPase inhibited by 20 μm vanadate and insensitive to molybdate was also identified in corn root microsomal membranes which could be largely separated from the NO3-sensitive ATPase on sucrose gradients and is believed to be of plasma membrane origin. Inasmuch as both ATPase most likely catalyze the efflux of H+ from the cytoplasm, our objective was to characterize and compare the properties of both ATPases under identical experimental conditions. The vanadate-sensitive ATPase was stimulated by cations (K+ > NH4+ > Rb+ > Cs+ > Li+ > Na+ > choline+) whereas the NO3-sensitive ATPase was stimulated by anions (Cl > Br > C2H3O2 > SO42− > I > HCO3 > SCN). Both ATPases required divalent cations. However, the order of preference for the NO3-sensitive ATPase (Mn2+ > Mg2+ > Co2+ > Ca2+ > Zn2+) differed from that of the vanadate-sensitive ATPase (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+). The vanadate-sensitive ATPase required higher concentrations of Mg:ATP for full activity than did the NO3-sensitive ATPase. The kinetics for Mg:ATP were complex for the vanadate-sensitive ATPase, indicating positive cooperativity, but were simple for the NO3-sensitive ATPase. Both ATPases exhibited similar temperature and pH optima (pH 6.5). The NO3-sensitive ATPase was stimulated by gramicidin and was associated with NO3-inhibitable H+ transport measured as quenching of quinacrine fluorescence. It was insensitive to molybdate, azide, and vanadate, but exhibited slight sensitivity to ethyl-3-(3-dimethylaminopropyl carbodiimide) and mersalyl. Overall, these results indicate several properties which distinguish these two ATPases and suggest that under defined conditions NO3-sensitive ATPase activity may be used as a quantitative marker for those membranes identified tentatively as tonoplast in mixed or nonpurified membrane fractions. We feel that NO3 sensitivity is a better criterion by which to identify this ATPase than either Cl stimulation or H+ transport because it is less ambiguous. It is also useful in identifying the enzyme following solubilization.  相似文献   

13.
Potential-dependent anion movement into tonoplast vesicles from oat roots (Avena sativa L. var Lang) was monitored as dissipation of membrane potentials (Δψ) using the fluorescence probe Oxonol V. The potentials (positive inside) were generated with the H+-pumping pyrophosphatase, which is K+ stimulated and anion insensitive. The relative rate of ΔΨ dissipation by anions was used to estimate the relative permeabilities of the anions. In decreasing order they were: SCN (100) > NO3 (72) = Cl (70) > Br (62) > SO42− (5) = H2PO4 (5) > malate (3) = acetate (3) > iminodiacetate (2). Kinetic studies showed that the rate of Δψ dissipation by Cl and NO3, but not by SCN, was saturable. The Km values for Cl and NO3 uptake were about 2.3 and 5 millimolar, respectively, suggesting these anions move into the vacuole through proteinaceous porters. In contrast to a H+-coupled Cl transporter on the same vesicles, the potential-dependent Cl transport was insensitive to 4,4′-diisothiocyano-2,2′-stilbene disulfonate. These results suggest the existence of at least two different mechanisms for Cl transport in these vesicles. The potentials generated by the H+-translocating ATPase and H+-pyrophosphatase were nonadditive, giving support to the model that both pumps are on tonoplast vesicles. No evidence for a putative Cl conductance on the anion-sensitive H+-ATPase was found.  相似文献   

14.
Ward JM  Sze H 《Plant physiology》1992,99(3):925-931
To determine whether the detergent-solubilized and purified vacuolar H+-ATPase from plants was active in H+ transport, we reconstituted the purified vacuolar ATPase from oat roots (Avena sativa var Lang). Triton-solubilized ATPase activity was purified by gel filtration and ion exchange chromatography. Incorporation of the vacuolar ATPase into liposomes formed from Escherichia coli phospholipids was accomplished by removing Triton X-100 with SM-2 Bio-beads. ATP hydrolysis activity of the reconstituted ATPase was stimulated twofold by gramicidin, suggesting that the enzyme was incorporated into sealed proteoliposomes. Acidification of K+-loaded proteoliposomes, monitored by the quenching of acridine orange fluorescence, was stimulated by valinomycin. Because the presence of K+ and valinomycin dissipates a transmembrane electrical potential, the results indicate that ATP-dependent H+ pumping was electrogenic. Both H+ pumping and ATP hydrolysis activity of reconstituted preparations were completely inhibited by <50 nanomolar bafilomycin A1, a specific vacuolar type ATPase inhibitor. The reconstituted H+ pump was also inhibited by N,N′-dicyclohexylcarbodiimide or NO3 but not by azide or vanadate. Chloride stimulated both ATP hydrolysis by the purified ATPase and H+ pumping by the reconstituted ATPase in the presence of K+ and valinomycin. Hence, our results support the idea that the vacuolar H+-pumping ATPase from oat, unlike some animal vacuolar ATPases, could be regulated directly by cytoplasmic Cl concentration. The purified and reconstituted H+-ATPase was composed of 10 polypeptides of 70, 60, 44, 42, 36, 32, 29, 16, 13, and 12 kilodaltons. These results demonstrate conclusively that the purified vacuolar ATPase is a functional electrogenic H+ pump and that a set of 10 polypeptides is sufficient for coupled ATP hydrolysis and H+ translocation.  相似文献   

15.
Chloride or nitrate decreased a pH gradient (measured as [14C]methylamine accumulation) in tonoplast-enriched vesicles. The ΔpH decrease was dependent on the anion concentration. These effects are independent of the anion-sensitive H+-ATPase of the tonoplast, since the pH gradient (acid inside) was imposed artificially using a pH jump or a K+ gradient and nigericin. 4,4′-Diisothiocyano-2,2′-stilbene disulfonic acid partially prevented the decrease in pH gradient induced by Cl. Two possible models to account for this anion-dependent decrease of ΔpH are: (a) H+ loss is accompanied by Cl or NO3 efflux from the vesicles via H+/anion symport systems on the tonoplast and (b) H+ loss is accompanied by Cl or NO3 uptake into the vesicles via H+/anion antiport systems. Depending on the requirements and conditions of the cell, these two systems would serve to either mobilize Cl and NO3 stored in the vacuole for use in the cytoplasm or to drive anions into the vacuole. Chloride or nitrate also decreased a pH gradient in fractions containing plasma membrane and Golgi, implying that these membranes may have similar H+-coupled anion transport systems.  相似文献   

16.
Sze H 《Plant physiology》1982,70(2):498-505
To understand the function and membrane origin of ionophore-stimulated ATPases, the activity of nigericin-stimulated ATPase was characterized from a low-density microsomal fraction containing sealed vesicles of autonomous tobacco (Nicotiana tabacum Linnaeous cv. Wisconsin no. 38) callus. The properties of KCl-stimulated, Mg-requiring ATPases (KCl-Mg,ATPase) were similar in the absence or presence of nigericin. Nigericin (or gramicidin) stimulation of a KCl-Mg,ATPase activity was optimum at pH 6.5 to 7.0. The enzyme was inhibited completely by N,N′-dicyclohexylcarbodiimide (10 μm), tributyltin (5 μm), and partially by vanadate (200 μm), but it was insensitive to fusicoccin and mitochondrial ATPase inhibitors, such as azide (1 mm) and oligomycin (5 μg/ml). The ATPase was more sensitive to anions than cations. Cations stimulated ATPase activity with a selectivity sequence of NH4+ > K+, Rb+, Cs+, Na+, Li+ > Tris+. Anions stimulated Mg, ATPase activity with a decreasing sequence of Cl = acetate > SO42− > benzene sulfonate > NO3. The anion stimulation was caused partly by dissipation of the electrical potential (interior positive) by permeant anions and partly by a specific ionic effect. Plant membranes had at least two classes of nigericin-stimulated ATPases: one sensitive and one insensitive to vanadate. Many of the properties of the nigericin-sensitive, salt-stimulated Mg,ATPase were similar to a vanadate-sensitive plasma membrane ATPase of plant tissues, yet other properties (anion stimulation and vanadate insensitivity) resembled those of a tonoplast ATPase. These results support the idea that nigericin-stimulated ATPases are mainly electrogenic H+ pumps originated in part from the plasma membrane and in part from other nonmitochondrial membranes, such as the tonoplast.  相似文献   

17.
The effects of calmodulin (CaM) on ATPase activity and ATP-dependent formation of a proton gradient (ΔpH) were studied in tonoplast membrane vesicles from corn (Zea mays L.) roots. At 0.6 micromolar, CaM stimulated ATPase activity by about 20% in the absence of an uncoupler, but by only 4% in its presence. Thus, the uncoupler-dependent increment of activity was decreased 30 to 45% by CaM. The formation of a proton gradient across the membrane vesicle, measured by quinacrine fluorescence quench, was inhibited about 20% by CaM. Its effect was additive to the effect of Ca2+ and was completely abolished by EGTA. These effects of CaM could be due to stimulation of H+ efflux or due to inhibition of the H+-ATPase. To distinguish between these possibilities, we examined the effect of CaM on dissipation of preformed ΔpH after the ATPase was inhibited. CaM stimulated the dissipation of a preformed ΔpH by 40% after the H+-ATPase was inhibited with NO3. This indicates that CaM facilitates the recycling of protons across the tonoplast membranes and does not regulate the H+-ATPase by direct inhibition.  相似文献   

18.
《Plant science》1988,54(2):117-124
H+-pumping driven by the plasma membrane H+-ATPase in membrane vesicles from 24-hour-old radish seedlings is stimulated by pretreatment of the membranes with fusicoccin (FC) (Rasi-Caldogno et al., Plant Physiol., 82 (1986) 121).FC-pretreatment stimulates also the ATPase activity, but to a lesser extentthan H+-pumping. More than 80% of the ATPase activity is inhibited by 100 μM vanadate or by 3 mM Ca2+.Preincubation of diluted membranes in the presence of 5 mM MgSO4 without ATP lowers both ATPase and H+-pumping activity by 20—30% without affecting FC-stimulated activities (i.e. the differences between FC-treated samples and the controls).After preincubation with MgSO4, ATPase activity of membranes pretreatedwith or without FC is delivery affected by Triton X-100 and by temperature: Triton X-100 activates FC-stimulated ATPase more than that of the controls and an increase of temperature (between 13 and 33°C) enhances ATPase activity of the controls more than the FC-stimulated one.These results have been interpreted as suggesting that, while H+-pumping in this membrane fraction is driven only by the plasma membrane H+-ATPase, ATP-hydrolysis is catalyzed by two different enzymes (or forms of the same enzxxyme) diversely sensitive to FC, Triton X-100 and temperature and possibly diversely involved in H+-pumping.  相似文献   

19.
Sealed microsomal vesicles were prepared from corn (Zea mays, Crow Single Cross Hybrid WF9-Mo17) roots by centrifugation of a 10,000 to 80,000g microsomal fraction onto a 10% dextran T-70 cushion. The Mg2+-ATPase activity of the sealed vesicles was stimulated by Cl and NH4+ and by ionophores and protonophores such as 2 micromolar gramicidin or 10 micromolar carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (FCCP). The ionophore-stimulated ATPase activity had a broad pH optimum with a maximum at pH 6.5. The ATPase was inhibited by NO3, was insensitive to K+, and was not inhibited by 100 micromolar vanadate or by 1 millimolar azide.

Quenching of quinacrine fluorescence was used to measure ATP-dependent acidification of the intravesicular volume. Quenching required Mg2+, was stimulated by Cl, inhibited by NO3, was insensitive to monovalent cations, was unaffected by 200 micromolar vanadate, and was abolished by 2 micromolar gramicidin or 10 micromolar FCCP. Activity was highly specific for ATP. The ionophore-stimulated ATPase and ATP-dependent fluorescence quench both required a divalent cation (Mg2+ ≥ Mn2+ > Co2+) and were inhibited by high concentrations of Ca2+. The similarity of the ionophore-stimulated ATPase and quinacrine quench and the responses of the two to ions suggest that both represent the activity of the same ATP-dependent proton pump. The characteristics of the proton-translocating ATPase differed from those of the mitochondrial F1F0-ATPase and from those of the K+-stimulated ATPase of corn root plasma membranes, and resembled those of the tonoplast ATPase.

  相似文献   

20.
We present evidence strongly suggesting that a proton gradient (acid inside) is used to drive an electroneutral, substrate-specific, K+/H+ antiport in both tonoplast and plasma membrane-enriched vesicles obtained from oilseed rape (Brassica napus) hypocotyls. Proton fluxes into and out of the vesicles were monitored both by following the quenching and restoration of quinacrine fluorescence (indicating a transmembrane pH gradient) and of oxonol V fluorescence (indicating membrane potential.) Supply of K+ (with Cl or SCN) after a pH gradient had been established across the vesicle membrane by provision of ATP to the H+-ATPase dissipated the transmembrane pH gradient but did not depolarize the positive membrane potential. Evidence that the K+/H+ exchange thus indicated could not be accounted for by mere electric coupling included the findings that, first, no positive potential was generated when KSCN or KCl was supplied, even in the absence of 100 millimolar Cl and, second, efflux of K+ from K+-loaded vesicles drives intravesicular accumulation of H+ against the electrochemical potential gradient. Neither was the exchange due to competition between K+ and quinacrine for membrane sites, nor to inhibition of the H+-ATPase. Thus, it is likely that it was effected by a membrane component. The exchanger utilized primarily K+ (at micromolar concentrations); Na+/H+ antiport was detected only at concentrations two orders of magnitude higher. Rb+, Li+, or Cs+ were ineffective. Dependence of tonoplast K+/H+ antiport on K+ concentration was complex, showing saturation at 10 millimolar K+ and inhibition by concentrations higher than 25 millimolar. Antiport activity was associated both with tonoplast-enriched membrane vesicles (where the proton pump was inhibited by more than 80% by 50 millimolar NO3 and showed no sensitivity to vanadate or oligomycin) and with plasma membrane-enriched fractions prepared by phase separation followed by separation on a sucrose gradient (where the proton pump was vanadate and diethylstilbestrol-sensitive but showed no sensitivity to NO3 or oligomycin). The possible physiological role of such a K+/H+ exchange mechanism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号