首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxisomes play a major role in human cellular lipid metabolism, including fatty acid β-oxidation. The most frequent peroxisomal disorder is X-linked adrenoleukodystrophy, which is caused by mutations in ABCD1. The biochemical hallmark of X-linked adrenoleukodystrophy is the accumulation of very long chain fatty acids (VLCFAs) due to impaired peroxisomal β-oxidation. Although this suggests a role of ABCD1 in VLCFA import into peroxisomes, no direct experimental evidence is available to substantiate this. To unravel the mechanism of peroxisomal VLCFA transport, we use Saccharomyces cerevisiae as a model organism. Here we provide evidence that in this organism very long chain acyl-CoA esters are hydrolyzed by the Pxa1p-Pxa2p complex prior to the actual transport of their fatty acid moiety into the peroxisomes with the CoA presumably being released into the cytoplasm. The Pxa1p-Pxa2p complex functionally interacts with the acyl-CoA synthetases Faa2p and/or Fat1p on the inner surface of the peroxisomal membrane for subsequent re-esterification of the VLCFAs. Importantly, the Pxa1p-Pxa2p complex shares this molecular mechanism with HsABCD1 and HsABCD2.  相似文献   

2.
Role of ALDP (ABCD1) and mitochondria in X-linked adrenoleukodystrophy   总被引:12,自引:0,他引:12       下载免费PDF全文
Peroxisomal disorders have been associated with malfunction of peroxisomal metabolic pathways, but the pathogenesis of these disorders is largely unknown. X-linked adrenoleukodystrophy (X-ALD) is associated with elevated levels of very-long-chain fatty acids (VLCFA; C(>22:0)) that have been attributed to reduced peroxisomal VLCFA beta-oxidation activity. Previously, our laboratory and others have reported elevated VLCFA levels and reduced peroxisomal VLCFA beta-oxidation in human and mouse X-ALD fibroblasts. In this study, we found normal levels of peroxisomal VLCFA beta-oxidation in tissues from ALD mice with elevated VLCFA levels. Treatment of ALD mice with pharmacological agents resulted in decreased VLCFA levels without a change in VLCFA beta-oxidation activity. These data indicate that ALDP does not determine the rate of VLCFA beta-oxidation and that VLCFA levels are not determined by the rate of VLCFA beta-oxidation. The rate of peroxisomal VLCFA beta-oxidation in human and mouse fibroblasts in vitro is affected by the rate of mitochondrial long-chain fatty acid beta-oxidation. We hypothesize that ALDP facilitates the interaction between peroxisomes and mitochondria, resulting, when ALDP is deficient in X-ALD, in increased VLCFA accumulation despite normal peroxisomal VLCFA beta-oxidation in ALD mouse tissues. In support of this hypothesis, mitochondrial structural abnormalities were observed in adrenal cortical cells of ALD mice.  相似文献   

3.
We describe four infants with a novel subtype of an isolated deficiency of one of the peroxisomal β-oxidation enzymes with detectable enzyme protein. The patients showed characteristic clinical and biochemical abnormalities, including hypotonia, psychomotor retardation, hepatomegaly, typical facial appearance, accumulation of very-long-chain fatty acids, and decreased lignoceric acid oxidation. However, β-oxidation enzyme proteins were detected by immunoblot analyses, and large peroxisomes were identified by immunofluorescence staining. In order to identify the underlying defect in these patients, complementation analysis was introduced using fibroblasts from these patients and patients with an established deficiency of either acyl-CoA oxidase or bifunctional enzyme, as identified by immunoblotting. In the complementing combinations, fused cells showed increased lignoceric acid oxidation, resistance against 1-pyrene dodecanoic acid/UV selection, and normalization of the size and the distribution of peroxisomes. The results indicate that two patients with a more severe clinical course were suffering from bifunctional enzyme deficiency and that the other two infants, who were siblings and had a less severe clinical presentation, were the first patients with acyl-CoA oxidase deficiency with detectable enzyme protein.  相似文献   

4.
The metabolism of [1-14C]lignoceric acid (C24:0) and [1-14C]tetracosatetraenoic acid (C24:4, n-6) was studied in normal skin fibroblast cultures and in cultures from patients with defects in peroxisomal beta-oxidation (but normal peroxisomal numbers). Cells from X-linked adrenoleukodystrophy (ALD) patients with a presumed defect in a peroxisomal acyl-CoA synthetase, specific for fatty acids of carbon chain lengths greater than 22 (very-long-chain fatty acids; VLCFA), showed a relatively normal production of radiolabelled CO2 and water-soluble metabolites from [1-14C]C24:0. However, the products of synthesis from acetate de novo (released by beta-oxidation), i.e. C16 and C18 fatty acids, were decreased, and carbon chain elongation of the fatty acid was increased. In contrast, cell lines from two patients with an unidentified lesion in peroxisomal beta-oxidation (peroxisomal disease, PD) showed a marked deficiency in CO2 and water-soluble metabolite production, a decreased synthesis of C16 and C18 fatty acids and an increase in carbon chain elongation. The relatively normal beta-oxidation activity of ALD cells appears to be related to low uptake of substrate, as a defect in beta-oxidation is apparent when measurements are performed on cell suspensions under high uptake conditions. Oxidation of [1-14C]C24:4 was relatively normal in ALD cells and in the cells from one PD patient but abnormal in those from the other. Our data suggest that, despite the deficiency in VLCFA CoA synthetase, ALD cells retain a near normal ability to oxidize both saturated and polyunsaturated VLCFA under some culture conditions. However, acetate released by beta-oxidation of the saturated VLCFA and, to a much lesser degree, the polyunsaturated VLCFA, appears to be used preferentially for the production of CO2 and water-soluble products, and acetate availability for fatty acid synthesis in other subcellular compartments is markedly decreased. It is likely that the increased carbon chain elongation of the saturated VLCFA which is also observed reflects the increased availability of substrate (C24:0) and/or an increase in microsomal elongation activity in ALD cells.  相似文献   

5.
Mouse very long-chain acyl-CoA synthetase in X-linked adrenoleukodystrophy   总被引:5,自引:0,他引:5  
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder characterized by accumulation of very long-chain fatty acids (VLCFA). This accumulation has been attributed to decreased VLCFA beta-oxidation and peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity. The X-ALD gene, ABCD1, encodes a peroxisomal membrane ATP binding cassette transporter, ALDP, that is hypothesized to affect VLCS activity in peroxisomes by direct interaction with the VLCS enzyme. Recently, a VLCS gene that encodes a protein with significant sequence identity to known rat and human peroxisomal VLCS protein has been identified in mice. We find that the mouse VLCS gene (Vlcs) encodes an enzyme (Vlcs) with VLCS activity that localizes to peroxisomes and is expressed in X-ALD target tissues. We show that the expression of Vlcs in the peroxisomes of X-ALD mouse fibroblasts improves VLCFA beta-oxidation in these cells, implying a role for this enzyme in the biochemical abnormality of X-ALD. X-ALD mice, which accumulate VLCFA in tissues, show no change in the expression of Vlcs, the subcellular localization of Vlcs, or general peroxisomal VLCS activity. These observations imply that ALDP is not necessary for the proper expression or localization of Vlcs protein, and the control of VLCFA levels does not depend on the direct interaction of Vlcs and ALDP.  相似文献   

6.
Peroxisomes are subcellular organelles that function in multiple anabolic and catabolic processes, including β-oxidation of very-long-chain fatty acids (VLCFA) and biosynthesis of ether phospholipids. Peroxisomal disorders caused by defects in peroxisome biogenesis or peroxisomal β-oxidation manifest as severe neural disorders of the central nervous system. Abnormal peroxisomal metabolism is thought to be responsible for the clinical symptoms of these diseases, but their molecular pathogenesis remains to be elucidated. We performed lipidomic analysis to identify aberrant metabolites in fibroblasts from patients with Zellweger syndrome (ZS), acyl-CoA oxidase1 (AOx) deficiency, D-bifunctional protein (D-BP) and X-linked adrenoleukodystrophy (X-ALD), as well as in peroxisome-deficient Chinese hamster ovary cell mutants. In cells deficient in peroxisomal biogenesis, plasmenylethanolamine was remarkably reduced and phosphatidylethanolamine was increased. Marked accumulation of very-long-chain saturated fatty acid and monounsaturated fatty acids in phosphatidylcholine was observed in all mutant cells. Very-long-chain polyunsaturated fatty acid (VLC-PUFA) levels were significantly elevated, whilst phospholipids containing docosahexaenoic acid (DHA, C22:6n-3) were reduced in fibroblasts from patients with ZS, AOx deficiency, and D-BP deficiency, but not in fibroblasts from an X-ALD patient. Because patients with AOx deficiency suffer from more severe symptoms than those with X-ALD, accumulation of VLC-PUFA and/or reduction of DHA may be associated with the severity of peroxisomal diseases.  相似文献   

7.
Peroxisomal ABC transporters encoded by the ABCD genes are thought to participate in the import of specific fatty acids in the peroxisomal matrix. ABCD1 deficiency is associated with X-linked adrenoleukodystrophy (X-ALD), the most frequent peroxisomal disorder which is characterized by the accumulation of saturated very-long-chain fatty acids (VLCFA). ABCD2 (the closest homolog of ABCD1) and ABCD3 have been shown to have partial functional redundancy with ABCD1; only when overexpressed, they can compensate for VLCFA accumulation. Other lipids, for instance polyunsaturated fatty acids (PUFA), should be possible candidate substrates for the ABCD2 and ABCD3 gene products, ALDRP and PMP70 respectively. Moreover, PUFA, which are known regulators of gene expression, could therefore represent potent inducers of the ABCD genes. To test this hypothesis, littermates of n-3-deficient rats were subjected to an n-3-deficient diet or equilibrated diets containing ALA (alpha-linolenic acid, 18:3n-3) as unique source of n-3 fatty acids or ALA plus DHA (docosahexaenoic acid, 22:6n-3) at two different doses. We analyzed the expression of peroxisomal ABC transporters and of the peroxisomal acyl-CoA oxidase gene 1 (Acox1) in adrenals, brain and liver. Whatever the diet, we did not observe any difference in gene expression in adrenals and brain. However, the hepatic expression level of Abcd2 and Abcd3 genes was found to be significantly higher in the n-3-deficient rats than in the rats fed the ALA diet or the DHA supplemented diets. This was accompanied by important changes in hepatic fatty acid composition. In summary, the hepatic expression of Abcd2 and Abcd3 but not of Abcd1 and Abcd4 appears to be highly sensitive towards dietary PUFA. This difference could be linked to the substrate specificity of the peroxisomal ABC transporters and a specific involvement of Abcd2 and Abcd3 in PUFA metabolism.  相似文献   

8.
X-linked adrenoleukodystrophy (X-ALD) is characterized by progressive mental and motor deterioration, with demyelination of the central and peripheral nervous system. Its principal biochemical abnormality is the accumulation of very-long-chain fatty acids (VLCFAs) in tissues and body fluids, caused by the impairment of peroxisomal β-oxidation. The authors have generated a line of mice deficient in ALD protein (ALDP) by gene targeting. ALDP-deficient mice appeared normal clinically, at least up to 12 mo. Western blot analysis showed absence of ALDP in the brain, spinal cord, lung, and kidney. The amounts of C26∶0 increased by 240% in the spinal cord. VLCFA β-oxidation in cultured hepatocytes was reduced to 50% of normal. The authors investigated the roles of ALDP in VLCFA β-oxidation using the ALDP-deficient mice. Very-long-chain acyl-CoA synthetase (VLACS) is functionally deficient in ALD cells. The impairment of VLCFA β-oxidation in the ALDP-deficient fibroblasts was not corrected by overexpression of VLACS only, but was done by co-expression of VLACS and ALDP, suggesting that VLACS requires ALDP to function. VLACS was detected in the peroxisomal and microsomal fractions of the liver from both types of mice. Peroxisomal VLACS was clearly decreased in the ALDP-deficient mouse. Thus, ALDP is involved in the peroxisomal localization of VLACS.  相似文献   

9.
Peroxisomes play an essential role in human cellular metabolism. Peroxisomal disorders, a group of genetic diseases caused by peroxisomal dysfunction, can be classified in three groups namely a group of disorders with a general peroxisomal dysfunction (Zellweger syndrome; infantile type of Refsum's disease; neonatal adrenoleukodystrophy, hyperpipecolic acidemia), a group with an impairment of some, but not all peroxisomal functions (rhizomelic chondrodysplasia punctata) and a group with impairment of only a single peroxisomal function (acatalasemia, X-linked adrenoleukodystrophy/adrenomyeloneuropathy; adult type of Refsum's disease; peroxisomal thiolase deficiency; peroxisomal acyl-CoA oxidase deficiency; hyperoxaluria type I). In this paper we report the typical findings in ophthalmological examinations of patients suspected of Zellweger syndrome contributing to the clinical diagnosis of this disorder. In biochemical studies using a rapid gaschromatographic detection method for plasmalogens we confirmed that plasmalogens are severely deficient in all tissues of Zellweger patients studied. Moreover, using a recently developed radiochemical method, de novo plasmalogen biosynthesis was found to be impaired in fibroblasts from patients with Zellweger syndrome, infantile Refsum's disease, neonatal adrenoleukodystrophy or rhizomelic chondrodysplasia punctata, this in contrast to X-linked chondrodysplasia in which a normal plasmalogen biosynthesis was found. From the literature it is known that peroxisomal beta-oxidation with both long-chain (C16:0) and very long-chain (C24:0; C26:0) fatty acids is deficient in Zellweger syndrome, infantile Refsum's disease and neonatal adrenoleukodystrophy. In contrast, in X-linked adrenoleukodystrophy only the peroxisomal beta-oxidation of the very long chain fatty acids is impaired. As a result very long-chain fatty acids accumulate in tissues, plasma, fibroblasts and amniotic fluid cells from patients with Zellweger syndrome, infantile Refsum's disease, neonatal and X-linked adrenoleukodystrophy, but not in rhizomelic chondrodysplasia punctata or X-linked chondrodysplasia. Finally we confirmed that the peroxisomal enzyme alanine glyoxylate aminotransferase is severely deficient in liver from a patient that died because of the neonatal type of hyperoxaluria type I, but not in liver from Zellweger patients.  相似文献   

10.
This work analyzes the thermogenic flux induced by the very long-chain fatty acid (VLCFA) lignoceric acid (C24:0) in isolated peroxisomes. Specific metabolic alterations of peroxisomes are related to a variety of disorders, the most frequent one being the neurodegenerative inherited disease X-linked adrenoleukodystrophy (X-ALD). A peroxisomal transport protein is mutated in this disorder. Due to reduced catabolism and enhanced fatty acid (FA) elongation, VLCFA accumulates in plasma and in all tissues, contributing to the clinical manifestations of this disorder. During peroxisomal metabolism, heat is produced but it is considered lost. Instead, it is a form of energy that could play a role in molecular mechanisms of this pathology and other neurodegenerative disorders. The thermogenic flux induced by lignoceric acid (C24:0) was estimated by isothermal titration calorimetry in peroxisomes isolated from HepG2 cells and from fibroblasts obtained from patients with X-ALD and healthy subjects. Heat flux induced by lignoceric acid in HepG2 peroxisomes was exothermic, indicating normal peroxisomal metabolism. In X-ALD peroxisomes the heat flux was endothermic, indicating the requirement of heat/energy, possibly for cellular metabolism. In fibroblasts from healthy subjects, the effect was less pronounced than in HepG2, a kind of cell known to have greater FA metabolism than fibroblasts. Our hypothesis is that heat is not lost but it could act as an activator, for example on the heat-sensitive pathway related to TRVP2 receptors. To investigate this hypothesis we focused on peroxisomal metabolism, considering that impaired heat generation could contribute to the development of peroxisomal neurodegenerative disorders.  相似文献   

11.
X-linked adrenoleukodystrophy (X-ALD) is characterized biochemically by elevated levels of saturated very long-chain fatty acids (VLCFAs) in plasma and tissues. In X-ALD, peroxisomal very-long-chain acyl-CoA synthetase (VLCS) fails to activate VLCFAs, preventing their degradation via β-oxidation. However, the product of the defective XALD gene (ALDP) is not a VLCS, but rather a peroxisomal membrane protein (PMP). Disruption of either or both of two yeast PMP genes related to the XALD gene did not produce a biochemical phenotype resembling that found in X-ALD fibroblasts. The authors identified a candidate yeast VLCS gene (the FAT1 locus) by its homology to rat liver VLCS. Disruption of this gene decreased VLCS activity, but had no effect on long-chain acyl-CoA synthetase activity. In FAT1-disruption strains, VLCS activity was reduced to 30–40% of wild-type in both a microsome-rich 27,000g supernatant fraction and a peroxisome- and mitochondria-rich pellet fraction of yeast spheroplast homogenates. Separation of the latter organelles by density gradient centrifugation revealed that VLCS activity was peroxisomal and not mitochondrial. VLCS gene-disruption strains had increased cellular VLCFA levels, compared to wild-type yeast. The extent of both the decrease in peroxisomal VLCS activity and the VLCFA accumulation in this yeast model resembles that observed in cells from X-ALD patients. Characterization of the gene(s) responsible for the residual peroxisomal VLCS activity may suggest new therapeutic approaches in X-ALD.  相似文献   

12.
X-linked adrenoleukodystrophy (X-ALD) results from mutations in ABCD1. ABCD1 resides on Xq28 and encodes an integral peroxisomal membrane protein (ALD protein [ALDP]) that is of unknown function and that belongs to the ATP-binding cassette-transporter superfamily. Individuals with ABCD1 mutations accumulate very-long-chain fatty acids (VLCFA) (carbon length >22). Childhood cerebral X-ALD is the most devastating form of the disease. These children have the earliest onset (age 7.2 +/- 1.7 years) among the clinical phenotypes for ABCD1 mutations, but onset does not occur at <3 years of age. Individuals with either peroxisomal biogenesis disorders (PBD) or single-enzyme deficiencies (SED) in the peroxisomal beta-oxidation pathway--disorders such as acyl CoA oxidase deficiency and bifunctional protein deficiency--also accumulate VLCFA, but they present during the neonatal period. Until now, it has been possible to distinguish unequivocally between individuals with these autosomal recessively inherited syndromes and individuals with ABCD1 mutations, on the basis of the clinical presentation and measurement of other biochemical markers. We have identified three newborn boys who had clinical symptoms and initial biochemical results consistent with PBD or SED. In further study, however, we showed that they lacked ALDP, and we identified deletions that extended into the promoter region of ABCD1 and the neighboring gene, DXS1357E. Mutations in DXS1357E and the ABCD1 promoter region have not been described previously. We propose that the term "contiguous ABCD1 DXS1357E deletion syndrome" (CADDS) be used to identify this new contiguous-gene syndrome. The three patients with CADDS who are described here have important implications for genetic counseling, because individuals with CADDS may previously have been misdiagnosed as having an autosomal recessive PBD or SED  相似文献   

13.
Immunoblot analysis of peroxisomal beta-oxidation enzymes proteins was carried on liver samples from 15 patients with peroxisomal disorders in which accumulation of very long chain fatty acids was always observed in plasma. In 11 cases including 4 cerebro-hepatorenal syndrome (CHRS), 4 neonatal adrenoleukodystrophy (NALD) and 3 infantile Refsum's disease, the liver peroxisomes could not be detected by electron microscopy. Immunoblot analysis revealed the absence, or presence in weak amounts, of the 72-kDa subunit of acyl-CoA oxidase, and the complete absence of the 52-kDa and 21-kDa subunits which are processed from the 72-kDa. The bifunctional protein (78-kDa) was absent or very reduced, as was the mature form of peroxisomal 3-ketoacyl-CoA thiolase (41-kDa). Multiple defects of peroxisomal beta-oxidation enzymes may be caused by an absence of synthesis or an inability to import proteins into peroxisomes in these patients. One patient, diagnosed as NALD, had no detectable liver peroxisomes but the presence, in normal amounts, of the three peroxisomal beta-oxidation enzyme proteins suggests that the transport of these enzymes into "peroxisomal ghosts" was still intact. The last 3 patients, clinically diagnosed as NALD, had normal liver peroxisomes. One patient had an isolated deficiency of the bifunctional protein and the 2 others had normal amounts of the 3 peroxisomal beta-oxidation enzymes, as shown by immunoblotting. This suggests that import and translocation of some peroxisomal proteins had occurred and that a mechanism is therefore required to explain the defect in these patients.  相似文献   

14.
Very-long-chain acyl-CoA synthetases (VLCS) activate very-long-chain fatty acids (VLCFA) containing 22 or more carbons to their CoA derivatives. We cloned the human ortholog (hVLCS) of the gene encoding the rat liver enzyme (rVLCS). Both hVLCS and rVLCS contain 620 amino acids, are expressed primarily in liver and kidney, and have a potential peroxisome targeting signal 1 (-LKL) at their carboxy termini. When expressed in COS-1 cells, hVLCS activated the VLCFA lignoceric acid (C24:0), a long-chain fatty acid (C16:0), and two branched-chain fatty acids, phytanic acid and pristanic acid. Immunofluorescence and immunoblot studies localized hVLCS to both peroxisomes and endoplasmic reticulum. In peroxisomes of HepG2 cells, hVLCS was topographically oriented facing the matrix and not the cytoplasm. This orientation, coupled with the observation that hVLCS activates branched-chain fatty acids, suggests that hVLCS could play a role in the intraperoxisomal reactivation of pristanic acid produced via alpha-oxidation of phytanic acid.  相似文献   

15.
The polyenoic fatty acids with carbon chain lengths from 26 to 38 (very-long-chain fatty acids, VLCFA) previously detected in abnormal amounts in Zellweger syndrome brain have been shown to be n-6 derivatives and therefore probably derived by chain elongation of shorter-chain n-6 fatty acids such as linoleic acid and arachidonic acid. Polyenoic VLCFA are also present in Zellweger syndrome liver, but this tissue differs significantly from brain in that the saturated and mono-unsaturated derivatives are the major VLCFA. Zellweger syndrome brain polyenoic VLCFA are present in the neutral lipids predominantly in cholesterol esters, with smaller amounts in the non-esterified fatty acid and triacylglycerol fractions. These fatty acids are barely detectable in any of the major phospholipids, but are present in significant amounts in an unidentified minor phospholipid. The polyenoic VLCFA composition of this lipid differs markedly from that observed for all other lipids, as it contains high proportions of pentaenoic and hexaenoic fatty acids with 34, 36 and 38 carbon atoms. A polar lipid with the chromatographic properties in normal brain contains similar fatty acids. It is postulated that the polyenoic VLCFA may play an important role in normal brain and accumulate in Zellweger syndrome brain because of a deficiency in the peroxisomal beta-oxidation pathway, although a possible peroxisomal role in the control of carbon-chain elongation cannot be discounted.  相似文献   

16.
Myelin proteolipid protein (PLP) is an acylated protein which contains approximately 2 mol of ester-bound fatty acids. In this study, the amount and composition of fatty acids covalently bound to human myelin PLP were determined during development and in peroxisomal disorders. Palmitic, oleic, and stearic acids accounted for most of the PLP acyl chains. However, in contrast to PLP in other species, human PLP contains relatively more very long chain fatty acids (VLCFA). The fatty acid composition remained essentially unchanged between 1 day and 74 years of age. The total amount of fatty acid bound to PLP was not altered in any of the pathological cases examined. However, in the peroxisomal disorder adrenoleukodystrophy, the proportions of saturated and, to a lesser extent, monounsaturated VLCFA bound to PLP were increased at the expense of oleic acid. Smaller, but significant, changes were observed in adrenomyeloneuropathy. The reduction in the levels of oleic acid was also observed in two other peroxisomal disorders, the cerebrohepatorenal (Zellweger) syndrome and neonatal adrenoleukodystrophy, as well as in the lysosomal disorder Krabbe globoid cell leukodystrophy. However, in these disorders, the decrease in oleic acid occurred at the expense of stearic acid, and not VLCFA. The results indicate that, although a characteristic PLP fatty acid pattern is normally maintained, changes in the acyl chain pool can ultimately be reflected in the fatty acid composition of the protein. The altered PLP-acyl chain pattern in peroxisomal disorders may contribute to the pathophysiology of these devastating disorders.  相似文献   

17.
Molecular species of phosphatidylcholine containing unsaturated (i.e., monoenoic and polyenoic) 32- to 40-carbon (very long chain) fatty acids (VLCFA-PC) are present in normal human brain, the fatty acid composition changing significantly with development. There is a marked increase in the concentration and a change in the polyenoic VLCFA composition of these molecular species in brains of patients with inherited defects in peroxisomal biogenesis [Zellweger's syndrome, neonatal adrenoleukodystrophy (ALD), and infantile Refsum's disease]. In contrast, there is a marked increase in monoenoic VLCFA-PC in X-linked ALD whereas molecular species containing polyenoic VLCFA are minor components.  相似文献   

18.
The acyl-CoA ligases convert free fatty acids to acyl-CoA derivatives, and these enzymes have been shown to be present in mitochondria, peroxisomes, and endoplasmic reticulum. Because their activity is obligatory for fatty acid metabolism, it is important to identify their substrate specificities and subcellular distributions to further understand the cellular regulation of these pathways. To define the role of the enzymes and organelles involved in the metabolism of very long chain (VLC) fatty acids, we studied human genetic cell mutants impaired for the metabolism of these molecules. Fibroblast cell lines were derived from patients with X-linked adrenoleukodystrophy (X-ALD) and Zellweger's cerebro-hepato-renal syndrome (CHRS). While peroxisomes are present and morphologically normal in X-ALD, they are either greatly reduced in number or absent in CHRS. Palmitoyl-CoA ligase is known to be present in mitochondria, peroxisomes, and endoplasmic reticulum (microsomes). We found enzyme-dependent formation of lignoceroyl-CoA in these same organelles (specific activities were 0.32 +/- 0.12, 0.86 +/- 0.12, and 0.78 +/- 0.07 nmol/h per mg protein, respectively). However, lignoceroyl-CoA synthesis was inhibited by an antibody to palmitoyl-CoA ligase in isolated mitochondria while it was not inhibited in peroxisomes or endoplasmic reticulum (ER). This suggests that palmitoyl-CoA ligase and lignoceroyl-CoA are different enzymes and that mitochondria lack lignoceroyl-CoA ligase. This conclusion is further supported by data showing that oxidation of lignoceric acid was found almost exclusively in peroxisomes (0.17 nmol/h per mg protein) but was largely absent from mitochondria and the finding that monolayers of CHRS fibroblasts lacking peroxisomes showed a pronounced deficiency in lignoceric acid oxidation in situ (1.8% of control). In spite of the observation that lignoceroyl-CoA ligase activity is present on the cytoplasmic surface of ER, our data indicate that lignoceroyl-CoA synthesized by ER is not available for oxidation in mitochondria. This organelle plays no physiological role in the beta-oxidation of VLC fatty acids. Furthermore, the normal peroxisomal oxidation of lignoceroyl-CoA but deficient oxidation of lignoceric acid in X-ALD cells indicates that cellular VLC fatty acid oxidation is dependent on peroxisomal lignoceroyl-CoA ligase. These studies allow us to propose a model for the subcellular localization of various acyl-CoA ligases and to describe how these enzymes control cellular fatty acid metabolism.  相似文献   

19.
Peroxisomal acyl-CoA oxidases catalyze the first step of beta-oxidation of a variety of substrates broken down in the peroxisome. These include the CoA-esters of very long-chain fatty acids, branched-chain fatty acids and the C27-bile acid intermediates. In rat, three peroxisomal acyl-CoA oxidases with different substrate specificities are known, whereas in humans it is believed that only two peroxisomal acyl-CoA oxidases are expressed under normal circumstances. Only three patients with ACOX2 deficiency, including two siblings, have been identified so far, showing accumulation of the C27-bile acid intermediates. Here, we performed biochemical studies in material from a novel ACOX2-deficient patient with increased levels of C27-bile acids in plasma, a complete loss of ACOX2 protein expression on immunoblot, but normal pristanic acid oxidation activity in fibroblasts. Since pristanoyl-CoA is presumed to be handled by ACOX2 specifically, these findings prompted us to re-investigate the expression of the human peroxisomal acyl-CoA oxidases. We report for the first time expression of ACOX3 in normal human tissues at the mRNA and protein level. Substrate specificity studies were done for ACOX1, 2 and 3 which revealed that ACOX1 is responsible for the oxidation of straight-chain fatty acids with different chain lengths, ACOX2 is the only human acyl-CoA oxidase involved in bile acid biosynthesis, and both ACOX2 and ACOX3 are involved in the degradation of the branched-chain fatty acids. Our studies provide new insights both into ACOX2 deficiency and into the role of the different acyl-CoA oxidases in peroxisomal metabolism.  相似文献   

20.
Very long chain fatty acid (VLCFA) beta-oxidation was compared in homogenates and subcellular fractions of cultured skin fibroblasts from normal individuals and from Zellweger patients who show greatly reduced numbers of peroxisomes in their tissues. beta-Oxidation of lignoceric (C24:0) acid was greatly reduced compared to controls in the homogenates and the subcellular fractions of Zellweger fibroblasts. The specific activity of C24:0 acid beta-oxidation was highest in the crude peroxisomal pellets of control fibroblasts. Fractionation of the crude mitochondrial and the crude peroxisomal pellets on Percoll density gradients revealed that the C24:0 acid oxidation was carried out entirely by peroxisomes, and the peroxisomal beta-oxidation activity was missing in Zellweger fibroblasts. In contrast to the beta-oxidation of C24:0 acid, the beta-oxidation of C24:0 CoA was observed in both mitochondria and peroxisomes. We postulate that a very long chain fatty acyl CoA (VLCFA CoA) synthetase, which is different from long chain fatty acyl CoA synthetase, is required for the effective conversion of C24:0 acid to C24:0 CoA. The VLCFA CoA synthetase appears to be absent from the mitochondrial membrane but present in the peroxisomal membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号