首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tocopherols are lipophilic antioxidants synthesized exclusively by photosynthetic organisms and collectively constitute vitamin E, an essential nutrient for both humans and animals. Tocopherol cyclase (TC) catalyzes the conversion of various phytyl quinol pathway intermediates to their corresponding tocopherols through the formation of the chromanol ring. Herein, the molecular and biochemical characterization of TCs from Arabidopsis (VTE1 [VITAMIN E 1]), Zea mays (SXD1 [Sucrose Export Deficient 1]) and Synechocystis sp. PCC6803 (slr1737) are described. Mutations in the VTE1, SXD1, or slr1737 genes resulted in both tocopherol deficiency and the accumulation of 2,3-dimethyl-6-phytyl-1,4-benzoquinone (DMPBQ), a TC substrate. Recombinant SXD1 and VTE1 proteins are able to convert DMPBQ to gamma-tocopherol in vitro. In addition, expression of maize SXD1 in a Synechocystis sp. PCC6803 slr1737 knockout mutant restored tocopherol synthesis, indicating that TC activity is evolutionarily conserved between plants and cyanobacteria. Sequence analysis identified a highly conserved 30-amino acid C-terminal domain in plant TCs that is absent from cyanobacterial orthologs. vte1-2 causes a truncation within this C-terminal domain, and the resulting mutant phenotype suggests that this domain is necessary for TC activity in plants. The defective export of Suc in sxd1 suggests that in addition to presumed antioxidant activities, tocopherols or tocopherol breakdown products also function as signal transduction molecules, or, alternatively, the DMPBQ that accumulates in sxd1 disrupts signaling required for efficient Suc export in maize.  相似文献   

2.
A putative 2-methyl-6-phytylbenzoquinone (MPBQ) methyltransferase gene, SLL0418, was identified from the Synechocystis PCC6803 genome based on its homology to previously characterized gamma-tocopherol methyltransferases. Genetic and biochemical evidence confirmed open reading frame (ORF) SLL0418 encodes a MPBQ methyltransferase. An SLL0418 partial knockout mutant accumulated beta-tocopherol with no effect in the overall tocopherol content of the cell. In vitro assays of the SLL0418 gene expressed in Escherichia coli showed the enzyme efficiently catalyzes methylation of ring carbon 3 of MPBQ. In addition, the enzyme also catalyzes the methylation of ring carbon 3 of 2-methyl-6-solanylbenzoquinol in the terminal step of plastoquinone biosynthesis.  相似文献   

3.
Photosystem II (PSII), the enzyme responsible for photosynthetic oxygen evolution, is a rapidly turned over membrane protein complex. However, the factors that regulate biogenesis of PSII are poorly defined. Previous proteomic analysis of the PSII preparations from the cyanobacterium Synechocystis sp PCC 6803 detected a novel protein, Psb29 (Sll1414), homologs of which are found in all cyanobacteria and vascular plants with sequenced genomes. Deletion of psb29 in Synechocystis 6803 results in slower growth rates under high light intensities, increased light sensitivity, and lower PSII efficiency, without affecting the PSII core electron transfer activities. A T-DNA insertion line in the PSB29 gene in Arabidopsis thaliana displays a phenotype similar to that of the Synechocystis mutant. This plant mutant grows slowly and exhibits variegated leaves, and its PSII activity is light sensitive. Low temperature fluorescence emission spectroscopy of both cyanobacterial and plant mutants shows an increase in the proportion of uncoupled proximal antennae in PSII as a function of increasing growth light intensities. The similar phenotypes observed in both plant and cyanobacterial mutants demonstrate that the function of Psb29 has been conserved throughout the evolution of oxygenic photosynthetic organisms and suggest a role for the Psb29 protein in the biogenesis of PSII.  相似文献   

4.
We report the identification and characterization of a low tocopherol Arabidopsis thaliana mutant, vitamin E pathway gene5-1 (vte5-1), with seed tocopherol levels reduced to 20% of the wild type. Map-based identification of the responsible mutation identified a G-->A transition, resulting in the introduction of a stop codon in At5g04490, a previously unannotated gene, which we named VTE5. Complementation of the mutation with the wild-type transgene largely restored the wild-type tocopherol phenotype. A knockout mutation of the Synechocystis sp PCC 6803 VTE5 homolog slr1652 reduced Synechocystis tocopherol levels by 50% or more. Bioinformatic analysis of VTE5 and slr1652 indicated modest similarity to dolichol kinase. Analysis of extracts from Arabidopsis and Synechocystis mutants revealed increased accumulation of free phytol. Heterologous expression of these genes in Escherichia coli supplemented with free phytol and in vitro assays of recombinant protein produced phytylmonophosphate, suggesting that VTE5 and slr1652 encode phytol kinases. The phenotype of the vte5-1 mutant is consistent with the hypothesis that chlorophyll degradation-derived phytol serves as an important intermediate in seed tocopherol synthesis and forces reevaluation of the role of geranylgeranyl diphosphate reductase in tocopherol biosynthesis.  相似文献   

5.
To elucidate influences on the tocopherol biosynthesis in cyanobacteria, wild type and mutant cells of a putative methyltransferase in tocopherol and plastoquinone biosynthesis of Synechocystis sp. PCC 6803 were grown under different conditions. The vitamin E content of cells grown under different light regimes, photomixotrophic or photoautotrophic conditions and varying carbon dioxide supplies were compared by HPLC measurements. The tocopherol levels in wild type cells increased under higher light conditions and low carbon dioxide supply. Photomixotrophic growth led to lower vitamin E amounts in the cells compared to those grown photoautotrophically. We were able to segregate a homozygous deltasll0418 mutant under photoautotrophic conditions. In contrast to former suggestions in the literature the deletion of this gene is not lethal under photomixotrophic conditions and the influence on tocopherol and plastoquinone amounts is diminutive. The methyltransferase encoded by the gene sll0418 is not essential either for tocopherol or plastoquinone synthesis.  相似文献   

6.
For more than 80 years, tocopherols have been known to be an essential nutrient, vitamin E, for humans and animals. Work in recent years has concentrated on dissecting tocopherol biosynthesis to engineer the pathway in agricultural crops. Molecular dissection of the pathway in plants is now complete with the cloning and characterization of the gene for Arabidopsis MPBQ/MSBQ methyltransferase (VITAMIN E 3; VTE3). Alison Van Eennemaan and colleagues used seed-specific expression of two vitamin E pathway methyltransferases to engineer increased vitamin E activity in soybeans.  相似文献   

7.
8.
秦春燕  张旭  陈谷 《微生物学报》2012,52(1):130-135
【目的】金属蛋白酶S2P在细菌中通过在膜切割转录调控因子、释放δ因子参与胁迫响应是跨膜信号转导的保守机制,但蓝细菌中S2P的功能还未被鉴定,故我们考察集胞藻PCC6803中的S2P同源蛋白Slr0643及Sll0862的金属蛋白酶活性。【方法】以pET-30b(+)为载体,分别构建重组质粒pF0643和pF0862,在大肠杆菌BL21(CE3)中诱导表达并纯化Slr0643及Sll0862蛋白,以β-酪蛋白为底物检测重组蛋白的酶活性。【结果】体外酶活实验显示重组表达的Slr0643及Sll0862蛋白有内切蛋白酶活性,且其活性受金属螯合剂o-phenanthroline的抑制。体外酶活的鉴定结果为进一步研究Slr0643和Sll0862的体内酶活和生物学功能奠定了基础。【结论】集胞藻PCC6803中的S2P同源蛋白Slr0643及Sll0862具有金属蛋白酶活性。  相似文献   

9.
The acyl carrier protein (ACP), an essential protein cofactor for fatty acid synthesis, has been isolated from two cyanobacteria: the filamentous, heterocystous, Anabaena variabilis (ATCC 29211) and the unicellular Synechocystis 6803 (ATCC 27184). Both ACPs have been purified to homogeneity utilizing a three-column procedure. Synechocystis 6803 ACP was purified 1800-fold with 67% yield, while A. variabilis ACP was purified 1040-fold with 50% yield. Yields of 13.0 micrograms ACP/g Synechocystis 6803 and 9.0 micrograms ACP/g A. variabilis were achieved. Amino acid analysis indicated that these ACPs were highly charged acidic proteins similar to other known ACPs. Sequence analysis revealed that both cyanobacterial ACPs were highly conserved with both spinach and Escherichia coli ACP at the phosphopantetheine prosthetic group region. Examining the probability of alpha-helix and beta-turn regions in various ACPs, showed that cyanobacterial ACPs were more closely related to E. coli ACP than spinach ACP I. Immunoblot analysis and a competitive binding assay for ACP illustrated that both ACPs bound poorly to spinach ACP I antibody. SDS/PAGE and native PAGE of Synechocystis 6803 ACP and A. variabilis ACP showed that cyanobacteria ACPs co-migrated with E. coli ACP and had relative molecular masses of 18,100 and 17,900 respectively. Both native and urea gel analysis of acyl-ACP products from fatty acid synthase reactions demonstrated that bacterial ACPs and plant ACP gave essentially the same metabolic products when assayed using either bacterial or plant fatty acid synthase. A. variabilis and Synechocystis 6803 ACP could be acylated using E. coli acyl ACP synthetase.  相似文献   

10.
Phytol from chlorophyll degradation can be phosphorylated to phytyl-phosphate and phytyl-diphosphate, the substrate for tocopherol (vitamin E) synthesis. A candidate for the phytyl-phosphate kinase from Arabidopsis thaliana (At1g78620) was identified via a phylogeny-based approach. This gene was designated VITAMIN E DEFICIENT6 (VTE6) because the leaves of the Arabidopsis vte6 mutants are tocopherol deficient. The vte6 mutant plants are incapable of photoautotrophic growth. Phytol and phytyl-phosphate accumulate, and the phytyl-diphosphate content is strongly decreased in vte6 leaves. Phytol feeding and enzyme assays with Arabidopsis and recombinant Escherichia coli cells demonstrated that VTE6 has phytyl-P kinase activity. Overexpression of VTE6 resulted in increased phytyl-diphosphate and tocopherol contents in seeds, indicating that VTE6 encodes phytyl-phosphate kinase. The severe growth retardation of vte6 mutants was partially rescued by introducing the phytol kinase mutation vte5. Double mutant plants (vte5 vte6) are tocopherol deficient and contain more chlorophyll, but reduced amounts of phytol and phytyl-phosphate compared with vte6 mutants, suggesting that phytol or phytyl-phosphate are detrimental to plant growth. Therefore, VTE6 represents the missing phytyl-phosphate kinase, linking phytol release from chlorophyll with tocopherol synthesis. Moreover, tocopherol synthesis in leaves depends on phytol derived from chlorophyll, not on de novo synthesis of phytyl-diphosphate from geranylgeranyl-diphosphate.  相似文献   

11.
Tocopherol belongs to the Vitamin E class of lipid soluble antioxidants that are essential for human nutrition. In plants, tocopherol is synthesized in plastids where it protects membranes from oxidative degradation by reactive oxygen species. Tocopherol cyclase (VTE1) catalyzes the penultimate step of tocopherol synthesis, and an Arabidopsis (Arabidopsis thaliana) mutant deficient in VTE1 (vte1) is totally devoid of tocopherol. Overexpression of VTE1 resulted in an increase in total tocopherol of at least 7-fold in leaves, and a dramatic shift from alpha-tocopherol to gamma-tocopherol. Expression studies demonstrated that indeed VTE1 is a major limiting factor of tocopherol synthesis in leaves. Tocopherol deficiency in vte1 resulted in the increase in ascorbate and glutathione, whereas accumulation of tocopherol in VTE1 overexpressing plants led to a decrease in ascorbate and glutathione. Deficiency in one antioxidant in vte1, vtc1 (ascorbate deficient), or cad2 (glutathione deficient) led to increased oxidative stress and to the concomitant increase in alternative antioxidants. Double mutants of vte1 were generated with vtc1 and cad2. Whereas growth, chlorophyll content, and photosynthetic quantum yield were very similar to wild type in vte1, vtc1, cad2, or vte1vtc1, they were reduced in vte1cad2, indicating that the simultaneous loss of tocopherol and glutathione results in moderate oxidative stress that affects the stability and the efficiency of the photosynthetic apparatus.  相似文献   

12.
集胞藻PCC6803野生型和其脂酰ACP合酶敲除突变株的自由脂肪酸含量和组成表明膜脂的重构和降解是细胞内自由脂肪酸的来源之一。在这一过程中脂肪酶起到关键性作用。通过基因组数据库检索,发现集胞藻PCC6803基因组中只有一个脂肪酶编码基因sll1969,但是还没有其功能相关的生化证据。为了确定该基因的功能及其在脂肪酸代谢途径中的作用,加深对集胞藻PCC6803脂肪酸代谢途径的了解,文中将sll1969基因在大肠杆菌中过表达和体外纯化,得到重组蛋白Sll1969,并对其酶学性质进行初步分析。在30℃条件下,测得Sll1969以对硝基苯丁酸酯作为底物时的Km和kcat值分别为(1.16±0.01)mmol/L和(332.8±10.0)/min;该脂肪酶的最适反应温度为55℃。通过比较分析sll1969突变株中脂肪酸含量和组成变化,发现sll1969的表达量与细胞自由脂肪酸的产量呈正相关,但Sll1969不是细胞中唯一的脂肪酶。  相似文献   

13.
Cyanobacteria have a thylakoid lipid composition very similar to that of plant chloroplasts, yet cyanobacteria are proposed to synthesize monogalactosyldiacylglycerol (MGDG), a major membrane polar lipid in photosynthetic membranes, by a different pathway. In addition, plant MGDG synthase has been cloned, but no ortholog has been reported in cyanobacterial genomes. We report here identification of the gene for monoglucosyldiacylglycerol (MGlcDG) synthase, which catalyzes the first step of galactolipid synthesis in cyanobacteria. Using comparative genomic analysis, candidates for the gene were selected based on the criteria that the enzyme activity is conserved between two species of cyanobacteria (unicellular [Synechocystis sp. PCC 6803] and filamentous [Anabaena sp. PCC 7120]), and we assumed three characteristics of the enzyme; namely, it harbors a glycosyltransferase motif, falls into a category of genes with unknown function, and shares significant similarity in amino acid sequence between these two cyanobacteria. By a motif search of all genes of Synechocystis, BLAST searches, and similarity searches between these two cyanobacteria, we identified four candidates for the enzyme that have all the characteristics we predicted. When expressed in Escherichia coli, one of the Synechocystis candidate proteins showed MGlcDG synthase activity in a UDP-glucose-dependent manner. The ortholog in Anabaena also showed the same activity. The enzyme was predicted to require a divalent cation for its activity, and this was confirmed by biochemical analysis. The MGlcDG synthase and the plant MGDG synthase shared low similarity, supporting the presumption that cyanobacteria and plants utilize different pathways to synthesize MGDG.  相似文献   

14.
叶绿醌是由1个萘醌环和1个半不饱和植基侧链组成的一类光系统Ⅰ(photosystem Ⅰ,PSⅠ)特有的辅因子。目前,在蓝藻中对其生物合成途径的研究主要集中在萘醌环的形成方面,而对其植基侧链的合成尚缺乏相关报道。本研究通过与近期在拟南芥中发现的1种催化植基单磷酸形成植基二磷酸的激酶(VTE6)进行同源序列比对,在集胞藻 PCC 6803中发现1个与之高度同源的蛋白质Sll0875。研究发现,在Sll0875缺失突变体中,叶绿醌和生育酚的含量缺失,叶绿素的含量降低(P<0.05),且该突变体在无葡萄糖培养基中生长迟缓。进一步利用叶绿素荧光、P700氧化还原动力学、77K低温荧光光谱和免疫印迹分析等方法分析了该蛋白质的缺失对PSⅠ功能的影响。研究表明,在突变体Δsll0875中, PSⅠ活性下降,PSⅠ亚基含量与野生型相比显著降低(P<0.01)。这一结果表明,叶绿醌的缺失影响了PSⅠ复合物的累积,导致PSⅠ功能受损,从而影响了蓝藻正常的生长和发育。本研究在蓝藻中证实植醇磷酸化途径对叶绿醌合成的重要性,为进一步研究蓝藻中叶绿醌在PSⅠ复合物的合成、组装和稳定等过程中的作用奠定基础。  相似文献   

15.
16.
Protein-protein interactions (PPIs) play crucial roles in protein function for a variety of biological processes. Data from large-scale PPI screening has contributed to understanding the function of a large number of predicted genes from fully sequenced genomes. Here, we report the systematic identification of protein interactions for the unicellular cyanobacterium Synechocystis sp. strain PCC6803. Using a modified high-throughput yeast two-hybrid assay, we screened 1825 genes selected primarily from (i) genes of two-component signal transducers of Synechocystis, (ii) Synechocystis genes whose homologues are conserved in the genome of Arabidopsis thaliana, and (iii) genes of unknown function on the Synechocystis chromosome. A total of 3236 independent two-hybrid interactions involving 1920 proteins (52% of the total protein coding genes) were identified and each interaction was evaluated using an interaction generality (IG) measure, as well as the general features of interacting partners. The interaction data obtained in this study should provide new insights and novel strategies for functional analyses of genes in Synechocystis, and, additionally, genes in other cyanobacteria and plant genes of cyanobacterial origin.  相似文献   

17.
Alpha-tocopherol (vitamin E) is synthesized from gamma-tocopherol in chloroplasts by gamma-tocopherol methyltransferase (gamma-TMT; VTE4). Leaves of many plant species including Arabidopsis contain high levels of alpha-tocopherol, but are low in gamma-tocopherol. To unravel the function of different forms of tocopherol in plants, an Arabidopsis plant (vte4-1) carrying a functional null mutation in the gene gamma-TMT was isolated by screening a mutant population via thin-layer chromatography. A second mutant allele (vte4-2) carrying a T-DNA insertion in the coding sequence of gamma-TMT was identified in a T-DNA tagged mutant population. In vte4-1 and vte4-2 leaves, high levels of gamma-tocopherol accumulated, whereas alpha-tocopherol was absent indicating that, presumably, these two mutants represents null alleles. Over-expression of the gamma-TMT cDNA in vte4-1 restored wild-type tocopherol composition. Mutant plants were very similar to wild type. During oxidative stress (high light, high temperature, cold treatment) the amounts of alpha-tocopherol and gamma-tocopherol increased in wild type, and gamma-tocopherol in vte4-1. However, chlorophyll content and photosynthetic quantum yield were very similar in wild type and vte4-1, suggesting that alpha-tocopherol can be replaced by gamma-tocopherol in vte4-1 to protect the photosynthetic apparatus against oxidative stress. Fatty acid and lipid composition were very similar in WT, vte4-1 and vte1, an Arabidopsis mutant previously isolated which is completely devoid of tocopherol. Therefore, a shift in tocopherol composition or the absence of tocopherol has no major impact on the amounts of specific fatty acids or on lipid hydrolysis.  相似文献   

18.
The evolution of oxygenic photosynthesis in cyanobacteria nearly three billion years ago provided abundant reducing power and facilitated the elaboration of numerous oxygen-dependent reactions in our biosphere. Cyanobacteria contain an internal thylakoid membrane system, the site of photosynthesis, and a typical Gram-negative envelope membrane system. Like other organisms, the extracytoplasmic space in cyanobacteria houses numerous cysteine-containing proteins. However, the existence of a biochemical system for disulfide bond formation in cyanobacteria remains to be determined. Extracytoplasmic disulfide bond formation in non-photosynthetic organisms is catalyzed by coordinated interaction between two proteins, a disulfide carrier and a disulfide generator. Here we describe a novel gene, SyndsbAB, required for disulfide bond formation in the extracytoplasmic space of cyanobacteria. The SynDsbAB orthologs are present in most cyanobacteria and chloroplasts of higher plants with fully sequenced genomes. The SynDsbAB protein contains two distinct catalytic domains that display significant similarity to proteins involved in disulfide bond formation in Escherichia coli and eukaryotes. Importantly, SyndsbAB complements E. coli strains defective in disulfide bond formation. In addition, the activity of E. coli alkaline phosphatase localized to the periplasm of Synechocystis 6803 is dependent on the function of SynDsbAB. Deletion of SyndsbAB in Synechocystis 6803 causes significant growth impairment under photoautotrophic conditions and results in hyper-sensitivity to dithiothreitol, a reductant, whereas diamide, an oxidant had no effect on the growth of the mutant strains. We conclude that SynDsbAB is a critical protein for disulfide bond formation in oxygenic photosynthetic organisms and required for their optimal photoautotrophic growth.  相似文献   

19.
At least 35 cytochrome P450 (P450, CYP) or cytochrome P450-like genes have been identified in 10 cyanobacterial genomes yet none have been functionally characterized. CYP110 and CYP120 represent the two largest cyanobacterial P450 families with 16 and four members, respectively, identified to date. The Synechocystis sp. PCC 6803 CYP120A1 protein sequence shares high degrees of conservation with CYP120A2 from Trichodesmium erythraeum IMS101 and CYP120B1 and CYP120C1 from Nostoc punctiforme PCC 73102. In this communication, we report the cloning, expression, purification, and characterization of CYP120A1 from Synechocystis. Homology modeling predictions of the three-dimensional structure of CYP120A1 coupled with in silico screening for potential substrates and experimental spectroscopic analyses have identified retinoic acid as a compound binding with high affinity to this P450's catalytic site. These characterizations of Synechocystis CYP120A1 lay the initial foundations for understanding the basic role of cytochrome P450s in cyanobacteria and related organisms.  相似文献   

20.
Hydrogenases and hydrogen metabolism of cyanobacteria.   总被引:11,自引:0,他引:11  
Cyanobacteria may possess several enzymes that are directly involved in dihydrogen metabolism: nitrogenase(s) catalyzing the production of hydrogen concomitantly with the reduction of dinitrogen to ammonia, an uptake hydrogenase (encoded by hupSL) catalyzing the consumption of hydrogen produced by the nitrogenase, and a bidirectional hydrogenase (encoded by hoxFUYH) which has the capacity to both take up and produce hydrogen. This review summarizes our knowledge about cyanobacterial hydrogenases, focusing on recent progress since the first molecular information was published in 1995. It presents the molecular knowledge about cyanobacterial hupSL and hoxFUYH, their corresponding gene products, and their accessory genes before finishing with an applied aspect--the use of cyanobacteria in a biological, renewable production of the future energy carrier molecular hydrogen. In addition to scientific publications, information from three cyanobacterial genomes, the unicellular Synechocystis strain PCC 6803 and the filamentous heterocystous Anabaena strain PCC 7120 and Nostoc punctiforme (PCC 73102/ATCC 29133) is included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号