首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuronal projections from neuroendocrine tracts (nervi corpori cordiaci I and II) in the brains of the locust (Schistocerca vaga), cricket (Acheta domesticus), and cockroach (Periplaneta americana) were studied using reconstructions of silver-intensified cobalt chloride preparations. Collaterals from the NCC I in these species branch extensively in the dorsal protocerebral neuropile, anterior to the stalk of the corpora pedunculata and ventral to its calyces. Other fibers project from the NCC I bilaterally into the medial protocerebral neuropile, anterior to the central body, and posterior to the beta lobes. NCC II collaterals arborize in the medial, dorsal, and lateral protocerebral neuropile, their region of projection partially overlapping with that of the NCC I. Several NCC II fibers terminate in the superior arch of the central body in Acheta but not in the other two species. Tritocerebral cells filled through the NCC I branch in the medial tritocerebral neuropile in all three species, but most extensively in Schistocerca. No NCC fibers were seen to penetrate any part of the corpora pedunculata, protocerebral bridge, olfactory glomeruli, ocellar tracts, or optic lobes. These neuronal projections from the NCC I and II lie anterior to regions of branching of second-order ocellar fibers and thus provide no anatomical basis for direct ocellar input to neurosecretory cells, contrary to previous reports for orthopteroid species (Brousse-Gaury, '71a, b). However, interneurons filled from the optic lobes were found to terminate in the same region of dorsal protocerebral neuropile as NCC I and II fibers in Acheta, thus providing a possible pathway for optic input to the cerebral neuroendocrine system.  相似文献   

2.
1. Single unimodal (olfactory) or multimodal (olfactory and mechanosensory) neurons in the antennal lobe of the deutocerebrum of the American cockroach were characterized functionally by microelectrode recording, and their morphological types and positions in the brain were established by dye injection. Thus individual, physiologically identified neurons of known shape could be mapped in reference to the areas of soma groups, glomeruli, tracts and their projection regions in the brain. 2. All of these neurons send processes to deutocerebral glomeruli, i.e., the regions in which the axons of antennal sensory cells terminate. Output neurons have axons that leave the deutocerebrum whereas local interneurons are anaxonic. 3. An output neuron innervates only one glomerulus, sending its axon into the calyces of the corpora pedunculata (CP) in the protocerebrum, where by multiple branching they reach many CP neurons. The same axons send collaterals into the lateral lobe of the protocerebrum. Because of this arrangement, each deutocerebral glomerulus is represented individually and separately in the two projection regions. The fine structure of the endings of the deutocerebral axons in the protocerebrum is described. In the CP calyces they form microglomeruli with typical divergent connectivity. 4. A local interneuron innervates many glomeruli without sending processes to other parts of the brain. 5. Unimodal olfactory and multimodal neurons can be either output neurons or local interneurons; multimodal information is sent to the protocerebrum directly, in parallel with the unimodal information. 6. At least one glomerulus--the macroglomerulus of the male deutocerebrum--is specialized so as to provide an exclusive topographic representation of certain olfactory stimuli not represented elsewhere (female sexual pheromone).  相似文献   

3.
The morphology of the larval and adult brain of Papilio demoleus, and changes in the cell population and neuropile morphology during the pupal period have been described. The larval brain has more simple fibre areas than that of the adult. Dividing neuroblasts have been found which form the adult neurones. The larval brain contains the three neuromeres (proto-, deuto-, and tritocerebrum). The protocerebrum has well developed corpora pedunculata, a central body, a pons cerebralis and developing optic centres. The corpora ventralia are joined with each other by paired ventral commissures (single in adult). The deutocerebrum is simple and small, the antennal centres are small and simple (ef. adult). The glomerular tritocerebrum is posteroventral to the deutocerebrum, and fibres from the former travel to the crura cerebri. The cortex of the brain consists of four types of glial cells and of association cells, and large and medium sized motor neurones. The number of mitoses is greatest in the larval and prepupal stages; in the pupa it decreases gradually and in late stages it does not occur. Histolysis and pyknosis begin in the prepupa and decrease considerably in the late pupa. The entire neural lamella is broken down in the early pupa. Numerous haemocytes penetrate the laminae of the neural lambella and envelop the entire brain. In the adult, behind the well-developed central body is an ellipsoid body. The medulla interna is divided into two smaller lobes and the deutocerebral lobes are differentiated into cortical and medullary zones. Chiasmata between optic centres are also formed during the pupal period.  相似文献   

4.
Summary We have used immunohistochemical methods to investigate the morphology of identified, presumptive serotonergic neurons in the antennal lobes and suboesophageal ganglion of the worker honeybee. A large interneuron (deutocerebral giant, DCG) is described that interconnects the deutocerebral antennal and dorsal lobes with the suboesophageal ganglion and descends into the ventral nerve chord. This neuron is accompanied by a second serotonin-immunoreactive interneuron with projections into the protocerebrum. Two pairs of bilateral immunoreactive serial homologues were identified in each of the three suboesophageal neuromeres and were also found in the thoracic ganglia. With the exception of the frontal commissure, no immunoreactive processes could be found in the peripheral nerves of the brain and the suboesophageal ganglion. The morphological studies on the serial homologues were extended by intracellular injections of Lucifer Yellow combined with immunofluorescence.  相似文献   

5.
The corpora pedunculata, or mushroom bodies, of the horseshoe crab, Limulus polyphemus, form a bulbous ventral hemisphere composed of two internal lobes that are highly branched like a cauliflower. This organ is clothed with a deep layer of small association neurons called globuli or Kenyon cells. In an animal that is 50 mm in width, they number 3.7 × 106, a value that rises to about 1 × 108 in an adult (250 mm width). The neuropil of each corpus pedunculatum converges from its peripheral lobules toward several major peduncles, which are in communication with the protocerebral neuropil by a narrow stalk containing about 5000 fibers in a 50 mm animal. The numerical relations suggest that presumptive second-order chemosensory fibers enter the corpora pedunculata and synapse divergently onto Kenyon cells. The axons of Kenyon cells, in turn, converge onto efferent fibers that leave through the stalk.  相似文献   

6.
The distribution of the NPY-like substances in the nervous system and the midgut of the migratory locust, Locusta migratoria and in the brain of the grey fleshfly, Sarcophaga bullata was determined by immunocytochemistry using an antiserum directed against synthetic porcine NPY. The peroxidase-antiperoxidase procedure revealed that NPY immunoreactive cell bodies and nerve fibers were observed in the brain, optic lobes, corpora cardiaca, suboesophageal ganglion and ventral nerve cord of the locust and in the brain, optic lobes and suboesophageal ganglion of the fleshfly. In the locust midgut, numerous endocrine cells and nerve fibers penetrating the outer musculature contained NPY-like immunoreactivity. The concentrations of NPY immunoreactive material in acetic acid extracts of locust brain, optic lobes, thoracic ganglia, ovaries and midguts was measured using a specific radioimmunoassay technique. The dilution curves of the crude tissue extracts were parallel to the standard curve. The highest amount of NPY-like immunoreactivity was found in the locust ovary and midgut. Reverse-phase high-performance liquid chromatography (RP-HPLC) and radioimmunoassay were used to characterize the NPY-like substances in the locust brain and midgut. HPLC-analysis revealed that NPY-immunoreactivity in the locust brain eluted as three separate peaks. The major peak corresponded to a peptide less hydrophobic than synthetic porcine NPY. RP-HPLC analysis of midgut extracts revealed the presence of an additional NPY-immunoreactive peak which had a retention time similar to the porcine NPY standard. The present data show the existence of a widespread network of NPY immunoreactive neurons in the nervous system of the locust and the fleshfly. Characterization of the immunoreactive substances indicates that peptides similar but not identical to porcine NPY are present in the central nervous system and midgut of insects.  相似文献   

7.
Each ocellar nerve in the house cricket Acheta domesticus contains giant nerve fibers of 10-15 μ diameter, characterized in Golgi Cox preparations by a single row of short collaterals which runs along nearly the entire length of a fiber. Numerous long collaterals are given off by thin fibers in the ocellar nerve; medium-size fibers give off relatively few collaterals. The lateral ocellar tracts extend posteriorly through the dorsal protocerebrum, crossing the protocerebral bridge dorsally. The smaller median ocellar tract runs more ventrally through the pars intercerebralis; posterior to the bridge its fibers turn out toward the lateral nerves. Golgi and cobalt preparations reveal branching of giant and mediu_-size ocellar fibers posterior to the bridge at two levels, forming bilateral regions of ocellar neuropile. No ocellar processes appear to be given off to the corpora pedunculata, centra! body, nervi corporis cardiaci, antenna! lobes, or circumesophageal connectives; it is uncertain whether ocellar collaterals extend into the protocerebral bridge or optic lobes. Cell bodies of giant and medium-sized fibers are located in the pars intercerebralis.  相似文献   

8.
Summary The occurrence of substance P-like immunoreactivity was studied in the locust brain at light and electron microscopic level using monoclonal IgG fraction to substance P. Small immunoreactive perikarya have been found beside the medial neurosecretory cells in horizontal brain sections. Widespread immunoreactivity was also observed in the protocerebral neuropil notably in the central body and bordering on the corpora pedunculata. The reaction endproduct appeared as fine, more or less round particles in the central body, and as coarse varicosities and wavy fibres bordering the peduncles. The roundish particles probably represent nerve terminals, while the wavy fibers correspond to neural processes. In the vicinity of the lobe immunoreactivity was not observed. Electron microscopically, a number of immunoreactive terminals were found in the protocerebral neuropil. The reaction endproduct was accumulated mostly in large dense core granules/average diameter 80 nm/however reaction endproduct was also observed on the external surface membranes of clear vesicles and mitochondria. Our results suggest the widespread occurrence of a substance-P immunoreactive neuropeptide in the cerebral ganglia of the migratory locust.  相似文献   

9.
Summary In the brain of the cockroach Periplaneta americana, the beta lobes of the corpora pedunculata respond with an intense positive reaction to a specific fluorescence histochemical method for catecholamines. The fluorescence reaction disappears completely after prolonged treatment of the cockroaches with reserpine. An ultrastructural examination of the beta lobes in formaldehyde-glutaraldehyde-osmium fixed preparations reveals the presence of two types of fibres: 1) Fibres and nerve endings containing small clear vesicles and sligthly larger vesicles with a semi-dense content. The appearance and size distribution of these vesicles ist not affected by treatment with reserpine. 2) Fibres containing larger and denser vesicles, but practically no clear vesicles. The size distribution of these dense vesicles is only slightly affected by treatment of the cockroaches with reserpine.If brain slices are incubated in a medium containing noradrenaline or -methyl-noradrenaline and fixed in permanganate, small vesicles with electron-dense central cores show up, similar to those which have been described in vertebrate adrenergic nerve fibres (small granular vesicles). They are confined to one of the two types of fibres (a and b) visible in these preparations, namely to type b, whose correspondence with type 2 fibres of formaldehyde-glutaraldehyde-osmium fixed preparations is discussed.The authors wish to thank Mr. E. Chessa and Mr. F. Piccirilli for technical assistance in photography.  相似文献   

10.
The large, hemispherical mass of the Limulus corpora pedunculata consists of two highly branched lobes, each connected to the protocerebrum by a narrow stalk. About 10(4) afferent fibers enter through the stalks and make diverse, profuse, and often reciprocal contacts with several million Kenyon (intrinsic) cells and one another. The Kenyon cell axonal arborizations converge on a few hundred efferent dendrites. The afferent fiber types can be classified into five types. Type A forms the club-shaped core of glomeruli and circumglomerular annuli, and contains small flat vesicles, suggesting an inhibitory function. Type B terminates with bushy endings in glomeruli and is presynaptic to both Kenyon cells and to Type A terminals. It has clear round vesicles and is the presumptive excitatory input. Type C terminates on other afferents, in glomeruli, and rarely on Kenyon cell bodies, contains angular (neurosecretory) granules and is postulated to impart circadian rhythm. Type D terminates on Kenyon cell somata and the initial neurite segment (but not in glomeruli), and contains dense-cored vesicles. Type E terminates in peduncles on other afferents and Kenyon cell telodendria. It contains dense vesicles. The C, D, and E afferents have reciprocal synaptic connections with Kenyon cell axon terminals. Glomeruli thus receive three different inputs of presumptive inhibitory (A), excitatory (B), and neuromodulatory nature (C). Kenyon cells, increasing in number up to about 1 x 10(8) in the adult, show minor variations in their dendritic pattern and have only one rare variant cell type. Interactions between them occur primarily at their axonal boutons as they crowd around efferent fibers. The latter have large receptive fields, some of their large somata are located within the confines of the corpora pedunculata, and they receive input almost only from Kenyon cells. Numerical and directional details of the circuitry in the corpora pedunculata have been extracted by a combination of light and electron microscopy, serial sectioning, silver staining, and stereology. The corpora pedunculata appear to process primarily the voluminous chemosensory input from the appendages, an assumption that is supported by the major connections of the organ.  相似文献   

11.
Serotonin-like immunoreactivity was mapped in the central nervous system (CNS) of the cockroach, Periplaneta americana. Immunoreactive staining occurred in every ganglion of the CNS. The largest numbers of immunoreactive somata were detected in the optic lobes and the brain, and lowest numbers in the first and second thoracic ganglia. Dense stained fibers, ramifications, and varicosities were found in all ganglia, and numerous axon like processes occurred in all interganglionic connectives. Immunoreactive processes were not, however, detected in most of the peripherally projecting nerve roots. Processes were found only in roots of the suboesophageal ganglion and the tritocerebral lobes of the brain. A comparison of the map for serotonin immunoreactivity with one generated for the pentapeptide transmitter proctolin suggests that the two systems overlap only in the suboesophageal ganglion and the tritocerebrum. The amine and peptide may co-occur in neurons in these regions. The serotonin immunoreactive system appeared significantly different from the octopaminergic system of the ventral nerve cord. Seventy-two potentially identifiable immunoreactive cells were located in the cockroach CNS. Some of these may be suitable for physiological study of the functional role of serotonin.  相似文献   

12.
The expression of alpha(1a)-adrenoreceptors (alpha(1a)-ARs) within the muscle spindles of rabbit masseter muscle was investigated. The alpha(1a)-ARs were detected by immunohistochemical fluorescent method and examined along the entire length of 109 cross serially sectioned spindles. The sympathetic fibers were visualized by the immunofluorescent labeling of the noradrenaline synthesizing enzymes tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH). In order to recognize the intrafusal muscle fiber types, antibodies for different myosin heavy chain isoforms (MyHCI) were used. TH and DBH immunolabeled nerve fibers have been observed within the capsule lamellar layers, in the periaxial fluid space and close to intrafusal muscle fibers. The alpha(1a)-ARs were detected on the smooth muscle cells of the blood vessels coursing in the muscle and in the capsule lamellar layers or within the periaxial fluid space of the spindles. Moreover, at the polar regions of a high percentage (88.1%) of muscle spindles a strong alpha(1a)-ARs immunoreactivity was present on the intrafusal muscle fibers. In double immunostained sections for alpha(1a)-ARs and MyHCI it was evidenced that both bag, and nuclear chain fibers express alpha(1a)-ARs. The receptors that we have detected by immunofluorescence may support a direct control by adrenergic fibers on muscle spindle.  相似文献   

13.
The supra-oesophageal ganglion (brain) of Schistocerca gregaria Forskál has been studied at the light-microscopical level using Wigglesworth's osmic acid-ethyl gallate method. Particular attention was paid to the midbrain. A structural ground-plan is described which incorporates the ocellar nerve roots, the antenno-glomerular bundles, the corpora cardiaca nerves I roots, the antennal lobes, the corpora pedunculata and the central complex. The "undifferentiated" midbrain is described in terms of the distribution of the main features of 15 unique pairs of large neurones all of which have their cell bodies in the brain and which project, either ipsilaterally or contralaterally, to the circumoesophageal connectives. In addition a single unique neurone with bilateral distribution restricted to the brain is described. All these neurones provide a conspicuous and constant framework for further investigation. A ground-plan based on the distribution of 64 individual neurones (central complex system I) is presented for the central complex. This system indicates that the central complex is fundamentally organized on the basis of 16 repetitive groups of neurones.  相似文献   

14.
Allatostatins are a family of neuropeptides first isolated from the cockroach, Diploptera punctata, that inhibit juvenile hormone production in that species (but do not do so in earwigs), and inhibit hindgut muscle contractions in some insects, including the earwig, Euborellia annulipes. We examined whether material from earwig brains is similar to cockroach allatostatins biochemically, immunologically and physiologically. Brain extracts from adult female earwigs were separated by high performance liquid chromatography (HPLC), followed by radioimmunoassay using antibodies to cockroach allatostatin (Dip-AST). Fractions that co-eluted with cockroach allatostatins were immunoreactive, and at least two peaks of immunoreactivity were detected. Material from each peak at 10 nM Dip-AST equivalents inhibited juvenile hormone biosynthesis in vitro by corpora allata of 2-day virgin D. punctata cockroaches; 1 nM was less effective, and non-immunoreactive fractions failed to inhibit juvenile hormone biosynthesis. Both crude and Sep-Pak (Waters) purified extracts of brains of earwigs containing 1 nM Dip-AST equivalents failed to suppress hindgut contractions in vitro of 2-day earwigs and of brooding female earwigs. In contrast, 1 nM cockroach allostatin 1 (Dip-AST 7) reversibly inhibited hindgut contractions in vitro. These results suggested the presence of another brain factor, such as proctolin, that counteracts the inhibitory effects of Dip-AST. In support of this hypothesis, proctolin stimulated hindgut contractions in vitro at 1 nM; the effects of equal concentrations of allatostatin and proctolin varied with the stage of the female. Furthermore, HPLC-separated fractions that co-eluted with cockroach allatostatin and were immunoreactive with antibodies to Dip-AST suppressed hindgut contractions in vitro of 2-day female earwigs. Finally, crude brain extracts of earwigs suppressed earwig juvenile hormone biosynthesis in vitro in glands of low, but not in glands of high, activity. Thus, earwig brain extract after HPLC separation has Dip-AST-like material that inhibits cockroach corpora allata and suppresses earwig hindgut contractions. Sep-Pak-extracted earwig brain material, however, does not inhibit earwig gut contraction. Although synthetic Dip-AST 7 does not inhibit juvenile hormone synthesis by earwig corpora allata, there is heat-stable material in earwig brain extract that does have this action.  相似文献   

15.
In the subterranean termite Reticulitermes flavipes, allatostatins (ASTs) with the C-terminus Phe-Gly Leu-amide were localized by immunocytochemistry with antibody against a cockroach AST, Dippu AST-7. AST-immunoreactivity occurred in the corpus cardiacum and corpus allatum and in the lateral and medial neurosecretory cells of the brain that innervate these organs as well as in many other nerve cells of the brain. This was observed in workers, nymphs, soldiers and secondary reproductives. A radioimmunoassay, using anti-Dippu AST-11, demonstrated about 40 fmole equivalents of AST in brains of soldiers and secondary reproductives. The product of the corpora allata in this species was determined to be juvenile hormone III. Its synthesis by corpora allata of secondary reproductives, determined by in vitro radiochemical assay, was inhibited in a dose-dependent fashion by two cockroach allatostatins, Dippu AST-7 and Dippu AST-11. Thus, as in cockroaches and crickets, allatostatin-containing nerves innervate the corpora allata of this termite species and their production of juvenile hormone is inhibited by these neuropeptides.  相似文献   

16.
The fiber constituents and connections of the calyces — the input-receiving regions — of the corpora pedunculata (“mushroom bodies”) were studied in reduced silver preparations from the American cockroach, Periplaneta americana (L.). In the outer synaptic layer of the calyces five fiber classes were distinguished, the first three of which arise outside the mushroom body. (1) Four highly similar neurons with somata near the optic lobe branch into different parts of the ipsiateral protocerebrum, including both calyces. Their fibers are highly constant in arrangement and position and contain small nucleus-like bodies. (2) The tractus olfactorio-globularis (sensu lato) emits fiber groups which course along the calycal walls as “calycal tracts” before ultimately dissipating into the synaptic layer. Variability within these tracts is described. (3) Fibers of undertermined origin outside the mushroom body radiate from the calycal center outwards through the synaptic layer. (4) From the inner calycal layer of neurites belonging to intrinsic mushroom-body neurons, perpendicular collaterals enter the synaptic layer. (5) Intrinsic-neuron somata near the calycal rim emit fibers which course tangentially within the synaptic layer from calycal rim to center. These fibers form a special peripheral zone in the pedunculus. The predominant presumably afferent calycal fiber class is that derived from the tractus olfactorio-globularis. No evidence was found for tracts from optic lobe to calyces. On this basis, and in light of the experimental and comparative anatomical literature, it is suggested that the corpora pedunculata of P. americana and other pterygotes are fundamentally second-order antennal sensory processing centers. Conflicting observations in earlier reports are critically discussed.  相似文献   

17.
The histological visualization of choline acetyltransferase (CAT) and acetylcholinesterase (AChE) on frozen sections of prostomia of Nereis virens indicate a concentration of cholinergic activity in the anterior brain. Components are probably sensory epithelial cells with cholinergic axons entering the brain in cephalic nerves and efferent cholinergic axons to prostomial muscle leaving the brain in the same nerves. There are also subepidermal cholinergic cells that may be second order motor neurons serving epidermal mucous cells. The smaller, second lobe of the corpora pedunculata and its associated vertical fibre tract are CAT4 and appear continuous, on each side of the cerebral ganglion, with a dorsal and a ventral longitudinal bundle of AChE+ fibers. This system tapers to nothing at the level of the posterior eyes. There is a small AChE+ component to each optic nerve and AChE is present in the nuchal epithelium. These observations are discussed in relation to earlier studies on aminergic and neurosecretory activity in the same ganglion.  相似文献   

18.
Octopamine plays an important role in many behaviors in invertebrates. It acts via binding to G protein coupled receptors located on the plasma membrane of responsive cells. Several distinct subtypes of octopamine receptors have been found in invertebrates, yet little is known about the expression pattern of these different receptor subtypes and how each subtype may contribute to different behaviors. One honey bee (Apis mellifera) octopamine receptor, AmOA1, was recently cloned and characterized. Here we continue to characterize the AmOA1 receptor by investigating its distribution in the honey bee brain. We used two independent antibodies produced against two distinct peptides in the carboxyl-terminus to study the distribution of the AmOA1 receptor in the honey bee brain. We found that both anti-AmOA1 antibodies revealed labeling of cell body clusters throughout the brain and within the following brain neuropils: the antennal lobes; the calyces, pedunculus, vertical (alpha, gamma) and medial (beta) lobes of the mushroom body; the optic lobes; the subesophageal ganglion; and the central complex. Double immunofluorescence staining using anti-GABA and anti-AmOA1 receptor antibodies revealed that a population of inhibitory GABAergic local interneurons in the antennal lobes express the AmOA1 receptor in the cell bodies, axons and their endings in the glomeruli. In the mushroom bodies, AmOA1 receptors are expressed in a subpopulation of inhibitory GABAergic feedback neurons that ends in the visual (outer half of basal ring and collar regions) and olfactory (lip and inner basal ring region) calyx neuropils, as well as in the collar and lip zones of the vertical and medial lobes. The data suggest that one effect of octopamine via AmOA1 in the antennal lobe and mushroom body is to modulate inhibitory neurons.  相似文献   

19.
El-Salhy  M.  Falkmer  S.  Kramer  K. J.  Speirs  R. D. 《Cell and tissue research》1983,232(2):295-317
In the brain of adult specimens of the tobacco hornworm moth, Manduca sexta (L), cells immunoreactive for several kinds of neuropeptides were localized by means of the PAP procedure, by use of antisera raised against mammalian hormones or hormonal peptides. In contrast, no such neurosecretory cells were found in the corpora cardiaca and corpora allata (CC/CA); in the CC/CA, however, immunoreactive nerve fibres were observed, reaching these organs from the brain. The neurosecretory cells found in the brain were immunoreactive with at least one of the following mammalian antisera, namely those raised against the insulin B-chain, somatostatin, glucagon C-terminal, glucagon N-terminal, pancreatic polypeptide (PP), secretin, vasoactive intestinal polypeptide (VIP), glucose-dependent insulinotropic peptide (GIP), gastrin C-terminus, enkephalin, alpha- and beta-endorphin, Substance P, and calcitonin. No cells were immunoreactive with antisera specific for detecting neurons containing the insulin A-chain, nerve growth factor, epidermal growth factor, insulin connecting peptide (C-peptide), polypeptide YY (PYY), gastrin mid-portion (sequence 6-13), cholecystokinin (CCK) mid-portion (sequences 9-20 and 9-25), neurotensin C-terminus, bombesin, motilin, ACTH, or serotonin. All the neuropeptide-immunoreactive cells observed emitted nerve fibers passing through the brain to the CC and in some cases also to the CA. In CC these immunoreactive nerve fibers tended to accumulate near the aorta. It was speculated that neuropeptides are released into the circulating haemolymph and act as neurohormones.  相似文献   

20.
Summary By use of a specific antiserum against synthetic ovine corticotropin-releasing factor (CRF) in the peroxidase-antiperoxidase (PAP) immunocytochemical procedure (Vandesande and Dierickx 1976), CRF-like antigenic determinants were demonstrated in the central nervous system of a human fetus, the Wistar rat, the frog Rana ridibunda, and the American cockroach Periplaneta americana. The immunoreactive CRF-producing cells occur mainly in the nucleus paraventricularis of the rat, while in Rana ridibunda these cells occur in the nucleus praeopticus. Immunoreactive CRF-containing fibres were also visualized. Very clear CRF-immunoreactive products were observed in the brain as well as the corpora cardiaca (CC) and corpora allata (CA) of the cockroach Periplaneta americana. ACTH-immunoreactivity was also demonstrated in the brain-CC-CA complex of this insect. Double immunohistochemical staining (Vandesande 1983) also revealed that both the CRFand ACTH-like substances occur in different neurosecretory neurons and nerve fibres. These results suggest that the antigenic determinants of CRF are very similar in vertebrates and insects bespeaking their very long evolutionary history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号