首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Subcellular distribution of glutathione S-transferase activity was investigated as stimulated form by N-ethylmaleimide in rat liver. The stimulated glutathione S-transferase activity was localized in mitochondrial and lysosomal fractions besides microsomes. Among N-ethylmaleimide-treated submitochondrial fractions, glutathione S-transferase activity was stimulated only in outer mitochondrial membrane fraction. In lysosomal fraction, it was suggested that glutathione S-transferase activity in peroxisomes, which is immunochemically related to microsomal transferase, was also stimulated, but not in lysosomes.  相似文献   

2.
The inhibition of catalytic activity of glutathione S-transferase psi (pI 5.5) of human liver by diethylpyrocarbonate (DEPC) has been studied. It is demonstrated that DEPC causes a concentration dependent inactivation of GST psi with a concomitant modification of 1-1.3 histidyl residues/subunit of the enzyme. This inactivation of GST psi could be reversed by treatment with hydroxylamine. Glutathione afforded complete protection to the enzyme from inactivation by DEPC. It is suggested that a functional histidyl residue is essential for the catalytic activity of the enzyme and that this residue is most likely to be present at or near the glutathione binding site (G-site).  相似文献   

3.
Glutathione S-transferase P (GST-P) exists as a homodimeric form and has two tryptophan residues, Trp28 and Trp38, in each subunit. In order to elucidate the role of the two tryptophan residues in catalytic function, we examined intrinsic fluorescence of tryptophan residues and effect of chemical modification by N-bromosuccinimide (NBS). The quenching of intrinsic fluorescence was observed by the addition of S-hexylglutathione, a substrate analogue, and the enzymatic activity was totally lost when single tryptophan residue was oxidized by NBS. To identify which tryptophan residue is involved in the catalytic function, each tryptophan was changed to histidine by site-directed mutagenesis. Trp28His GST-P mutant enzyme showed a comparable enzymatic activity with that of the wild type one. Trp38His mutant neither was bound to S-hexylglutathione-linked Sepharose nor exhibited any GST activity. These findings indicate that Trp38 is important for the catalytic function and substrate binding of GST-P.  相似文献   

4.
CM-cellulose chromatography of rat liver and kidney cytosol at pH6 reveals the presence of a second Ya-subunit dimer of glutathione S-transferase (GST-F) in addition to the recently described GST-YaYa (GST-L; our nomenclature) [Hayes & Clarkson (1982) Biochem. J. 207, 459-470]. The two forms are structurally similar (by the criteria of CNBr- and Staphylococcus-V8-proteinase-cleavage peptide maps), and both are sensitive to inhibition by haemin. However, their kinetic parameters with 1-chloro-2,4-dinitrobenzene are quite distinct, and they show differential inducibility by phenobarbitone. These results suggest a similar heterogeneity in Ya-subunits to that previously described for Yb-subunits of glutathione S-transferase and indicate that significant gene duplication may have occurred in these multifunctional intracellular binding proteins.  相似文献   

5.
Glutathione disulfide stimulates the activity of rat liver microsomal glutathione S-transferase 2-fold after incubation at 25 degrees C for 10 min. When the microsomes were incubated with the disulfide for over 20 min, the transferase activity increased to the same extent as in the case of N-ethylmaleimide (6-fold). Even in the presence of reduced glutathione, some enhancement of the transferase activity was observed. The data presented here are evidence that increase in glutathione disulfide level, e.g. by lipid peroxidation, on endoplasmic reticulum causes the upregulation of microsomal glutathione S-transferase activity.  相似文献   

6.
Three cationic glutathione S-transferase forms isolated from rat liver were characterized as dimers that originated from different combinations of two subunit types, Ya and Yc. The cationic forms were purified using lysyl glutathione affinity matrices and were chromatographically resolved from anionic glutathione S-transferases that contain Yb subunits. The three classes of cationic transferase exhibited similar specific activities with 1-chloro-2,4-dinitrobenzene as a substrate, all forms cross-reacted with antibodies to glutathione S-transferase B, and all had comparable secondary structures and tryptophan fluorescence properties. In spite of those similarities, the Yc-containing forms were clearly distinguishable from Ya forms on the basis of characteristic differences in circular dichroic patterns associated with their aromatic side chains. All cationic transferases bound bilirubin with stoichiometric ratios of 1 mol/dimeric protein molecule, but discrete differences in mode of binding were ascribed to forms containing Ya subunits as compared to Yc dimers. Binding to Yc forms was of lower affinity and may be associated with the catalytic region of the protein since glutathione effectively displaced bilirubin from the Yc component.  相似文献   

7.
8.
9.
Most drug-metabolizing phase I and phase II enzymes, including the glutathione S-transferases (GST), exhibit a zonated expression in the liver, with lower expression in the upstream, periportal region. To elucidate the involvement of pituitary-dependent hormones in this zonation, the effect of hypophysectomy and 3,3',5-triiodo-L-thyronine (T3) on the distribution of GST was studied in rats. Hypophysectomy increased total GST activity both in the periportal and perivenous liver region. Subsequent T3 treatment counteracted this effect in the perivenous zone. However, analysis for either mu class M1/M2-specific (1,2-dichloro-4-nitrobenzene) or alpha class A1/A2-specific (7-chloro-4-nitrobenzo-2-oxa-1,3-diazole) GST activity revealed that T3 treatment did not significantly affect the perivenous activity of these GST classes. In contrast, T3 was found to significantly counteract the increase of alpha class GST activity caused by hypophysectomy in the periportal zone. To establish whether this effect was T3-specific, hepatocytes were isolated from either the periportal and perivenous zone by digitonin/collagenase perfusion and cultured either as pyruvate-supplemented monolayer or as co-culture with rat liver epithelial cells. Only in the latter it was found that T3 suppressed the A1/A2-specific GST activity and alpha class proteins predominantly in periportal cells. The data demonstrate that T3 is an important factor responsible for the low expression of alpha GST in the periportal region. T3 may be involved in the periportal downregulation of other phase I and II enzymes as well.  相似文献   

10.
The E(280)/E(260) ratio was found to be suitable for following the ionization of cytosine residues of polynucleotides on the basis of studies with model compounds such as oligoguanylic acid, oligocytidylic acid, a complex formed between polyadenylic acid and polyuridylic acid, and a copolymer of guanylic acid and cytidylic acid, provided that changes in secondary structure were taken into account. The pK of cytosine residues of a polynucleotide in the amorphous form was found to be 4.70 at 25 degrees in 0.1m-sodium phosphate on the basis of titration at 75-85 degrees and on the assumption that the heat of ionization was the same as the value (5.2kcal./mole) found for CMP. In contrast, the pK of cytosine residues in the double-helical form of DNA was found to be about 3.25. These observations were utilized in estimating the fraction of cytosine residues in helical segments of ribosomal RNA, a copolymer of guanylic acid and cytidylic acid, and a copolymer of adenylic acid, guanylic acid, uridylic acid and cytidylic acid. The ionization of guanine and uracil residues was estimated from changes in the E(270)/E(260) ratio and E(230)/E(260) ratio respectively. In the amorphous form of RNA both residues had the same pK, whereas in the double-helical form ionization was suppressed. The fraction of guanine and uracil residues in amorphous segments may be estimated from the titration curves. The difference in the denaturation spectrum of adenine--uracil and guanine--cytosine base pairs at 280mmu was enhanced in acidic solutions whereas E(260) was hardly affected. Hence a comparison of the increments in E(280) and E(260) obtained on increasing the temperature at constant pH may be used to distinguish the melting ranges of helical domains differing in nucleotide composition. In alkaline solutions comparison of the increments in E(260) and E(270) yields similar information. In acidic solutions the fraction of cytosine residues involved in helical secondary structure, the degree of ionization of cytosine residues and the fraction of adenine--uracil base pairs denatured may be estimated from DeltaE(265) and DeltaE(280). In alkaline solutions the fractions of guanine and uracil residues involved in secondary structure and the degrees of ionization of these residues may be estimated from DeltaE(230), DeltaE(245), DeltaE(260) and DeltaE(280).  相似文献   

11.
The major proportion of rat liver glutathione S-transferase is cytosolic. Carefully washed mitochondria contain 0.25-0.47% of the cytosolic activity. Subfractionation of washed mitochondria using digitonin treatment revealed that glutathione S-transferase release did not parallel that of any of the mitochondrial marker enzymes. Glutathione S-transferase release paralleled that of lactate dehydrogenase, suggesting that these 'mitochondrial' activities are due to loosely bound cytoplasmic forms.  相似文献   

12.
Subunits of multiple molecular forms of dimeric glutathione S-transferase in rat liver cytosol were analyzed by two-dimensional gel electrophoresis (isoelectric focusing/sodium dodecyl sulfate-electrophoresis) followed by staining with Coomassie blue dye. The five subunits, Ya, Yb, Yb', Yc, and Yp (Mr's 26,500, 27,500, 27,500, 28,500, and 26,000, respectively) of seven molecular forms, A2, AC, C2, B2, BL, L2, and GST-P, were identified by comparison of molecular weights and pI values with those of purified molecular forms and by immunoadsorption of the molecular forms in the cytosol as well as those synthesized in vitro using antibodies against the seven forms. Yp is the subunit of placental glutathione S-transferase, GST-P (YpYp), which is markedly increased in carcinogen-treated rat livers [A. Kitahara et al. (1984) Cancer Res. 44, 2698-2703; K. Satoh et al. (1985) Proc. Natl. Acad. Sci. USA 82, 3964-3968]. Microheterogeneity was detectable within Yb, Yb', and Yp subunits, the different forms, termed Yb1, Yb2, Yb'1, Yb'2, and Yp1, Yp2, being similar in size but differing by approx. 0.3 pI unit within each subunit. These microheterogeneous forms were also detectable in the polypeptides translated in vitro in a rabbit reticulocyte lysate translation system from liver poly(A)-containing RNAs, suggesting that they are translatable from distinct mRNAs.  相似文献   

13.
An anionic glutathione S-transferase representing approximately 20% of the total glutathione S-transferase protein and 10% of the total transferase activity toward 1-chloro 2,4-dinitrobenzene has been purified to homogeneity from the 105,000 x g supernatant of rat liver homogenate. The SDS gel electrophoretic data on subunit composition revealed that the anionic isozyme is composed of two subunits with an identical Mr of 26,000. The Km values for 1-chloro 2,4-dinitrobenzene and reduced glutathione were determined to be 0.94 mM and 0.23 mM respectively. A significant amount of glutathione peroxidase activity toward cumene hydroperoxide is associated with the new isozyme.  相似文献   

14.
Selenium (Se) deficiency in rats produced significant increases in the activity of hepatic glutathione S-transferase (GST) with 1-chloro-2,4-dinitrobenzene as substrate and in various GST isoenzymes when determined by radioimmunoassay. These changes is GST activity and concentration were associated with Se deficiency that was severe enough to provoke decreases of over 98% in hepatic Se-containing glutathione peroxidase activity (Se-GSHpx). However, decreases in hepatic Se-GSHpx of 60% induced by copper (Cu) deficiency had no effect on GST activity or concentration. Increased GST activity in Se deficiency has previously been postulated to be a compensatory response to loss of Se-GSHpx, since some GSTs have a non-Se-glutathione peroxidase (non-Se-GSHpx) activity. However, the GST isoenzymes determined in this study, GST Yb1Yb1, GST YcYc and GST YaYa, are known to have up to 30-fold differences in non-Se-GSHpx activity, but they were all significantly increased to a similar extent in the Se-deficient rats.  相似文献   

15.
The feeding of high-fat diets rich in polyunsaturated fatty acids (PUFAs) caused a marked increase in the acyl CoA thioesterase activity of the Walker 256 tumour. Diets containing lower levels of PUFAs did not alter the activity of acyl CoA thioesterase and the exposure of LLC-WRC256 tumour cells, in culture, to PUFAs (150 microM) also was ineffective in altering activity. The tumours from n-3 PUFA-rich and control diets were analysed by transmission electron microscopy in order to compare peroxisomal content. The presence of PUFAs led to an almost 10-fold increase in the number of peroxisomes present in the tumour tissue. A common feature of the PUFA-treated tumour was the presence of many cells containing highly condensed heterochromatin at the periphery of the nucleus, indicative of apoptosis. The sparsity of endoplasmic reticulum and the lack of detection of mitochondrial acyl CoA thioesterase, MTE-I, led to the conclusion that the increase in tumour acyl CoA thioesterase activity may be due to an increase in the activity of the peroxisomal enzyme.  相似文献   

16.
The rat placental glutathione S-transferase (GST-P), an isozyme of glutathione S-transferase, is not expressed in normal liver but is highly induced at an early stage of chemical hepatocarcinogenesis and in hepatomas. Recently, we reported that the NF-E2 p45-related factor 2 (Nrf2)/MafK heterodimer binds to GST-P enhancer 1 (GPE1), a strong enhancer of the GST-P gene, and activates this gene in preneoplastic lesions and hepatomas. In addition to the positive regulation during hepatocarcinogenesis, negative regulatory mechanisms might work to repress GST-P in normal liver, but this remains to be clarified. In this work, we identify the CCAAT enhancer-binding protein alpha (C/EBPalpha) as a negative regulator that binds to GPE1 and suppresses GST-P expression in normal liver. C/EBPalpha binds to part of the GPE1 sequence, and the binding of Nrf2/MafK and C/EBPalpha to GPE1 is mutually exclusive. In a transient-transfection analysis, C/EBPalpha activated GPE1 in F9 embryonal carcinoma cells but strongly inhibited GPE1 activity in hepatoma cells. The expression of C/EBPalpha was specifically suppressed in GST-P-positive preneoplastic foci in the livers of carcinogentreated rats. A chromatin immunoprecipitation analysis showed that C/EBPalpha bound to GPE1 in the normal liver in vivo but did not bind in preneoplastic hepatocytes. Introduction of the C/EBPalpha gene fused with the estrogen receptor ligand-binding domain into hepatoma cells, and subsequent activation by beta-estradiol led to the suppression of endogenous GST-P expression. These results indicate that C/EBPalpha is a negative regulator of GST-P gene expression in normal liver.  相似文献   

17.
The analogue 3-decynoyl-N-acetylcysteamine inhibits the synthesis of unsaturated fatty acids in Escherichia coli, resulting in the accumulation of saturated fatty acids in the membrane (Kass, 1968).In the presence of this analogue, DNA, RNA and protein synthesis continue at a linear rate for approximately two doubling times, and then cease. On the other hand, the analogue will inhibit the formation of new replication forks (premature initiation), which normally arise as a result of thymine starvation.Unlike other temperature-sensitive DNA mutants, mutants that are defective in initiating DNA replication (dnaA or dnaC) are unable to replicate DNA at a permissive temperature if they terminate replication at 42 °C in the presence of 3-decynoyl-N-acetylcysteamine.When replication is terminated at 42 °C, cultures of dnaA or dnaC mutants normally will reinitiate replication upon lowering the temperature to 30 °C. For each mutant this reinitiation is characterized by a particular temperature sensitivity. Such mutants become more temperature sensitive if the temperature is lowered in the presence of 3-decynoyl-N-acetylcysteamine. All the effects of this analogue can be reversed by the addition of unsaturated fatty acids.These results are interpreted using a model in which replication is initiated at a particular lipid site on the membrane. In the absence of unsaturated fatty acids functional lipid sites are not made. Functional sites, however, can be used again provided they are not inactivated by interaction with an inactive dnaA or dnaC product.  相似文献   

18.
19.
The postnatal development in male Sprague-Dawley rats of hepatic glutathione S-transferase B (ligandin) in relation to the other glutathione S-transferases is described. The concentration of glutathione S-transferase B in 1-day-old male rats is about one-fifth of that in adult animals. The enzyme reaches adult concentrations 4-5 weeks later. When assessed by substrate specificity or immunologically, the proportion of transferase B relative to the other glutathione S-transferases is high during the first week after birth. At this age, 67.5% of the transferase activity towards 1-chloro-2,4-dinitrobenzene is immunoprecipitable by anti-(transferase B), compared with about 50% in adults and older pups. Between the second and the fifth postnatal week, the fraction of transferase B increases in parallel fashion with the other transferases in hepatic cytosol. Neither L-thyroxine nor cortisol induce a precocious increase in glutathione S-transferase activity. Phenobarbital did induce transferase activity towards 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene in both pups and adults. The extent of induction by phenobarbital was a function of basal activity during development such that the percentage stimulation remained constant from 5 days postnatally to adulthood.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号