首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atherosclerosis is the underlying pathological process of most cardiovascular disease. A critical component of the "response to retention" hypothesis of atherogenesis is proteoglycan/low density lipoprotein (LDL) binding. Transforming growth factor beta (TGF-beta) is present in atherosclerotic lesions, regulates vascular smooth muscle cell (VSMC) proteoglycan synthesis via an unknown signaling pathway, and increases proteoglycan/LDL binding. This pathway was investigated using the activin receptor-like kinase 5 (ALK5) inhibitor SB431542 and inhibitors of p38 MAP kinase as a possible downstream or alternative mediator. TGF-beta stimulated and SB431542 inhibited the phosphorylation of Smad2/3. In human VSMC, TGF-beta increased [(35)S]sulfate incorporation into proteoglycans associated with a 19% increase in glycosaminoglycan (GAG) chain size by size exclusion chromatography. SB431542 caused a concentration-dependent decrease in TGF-beta-mediated [(35)S]sulfate incorporation with 92% inhibition at 3 mum. Two different p38 MAP kinase inhibitors, SB203580 and SB202190, but not the inactive analogue SB202474, concentration-dependently blocked TGF-beta-mediated [(35)S]sulfate incorporation. TGF-beta increased [(3)H]glucosamine incorporation into glycosaminoglycans by 180% and [(35)S]Met/Cys incorporation into proteoglycan core proteins by 35% with both effects completely inhibited by SB431542. Blocking both Smad2/3 and p38 MAP kinase pathways prevented the effect of TGF-beta to increase proteoglycan to LDL binding. TGF-beta mediates its effects on proteoglycan synthesis in VSMCs via the ALK5/Smad2/3 phosphorylation pathway as well as via the p38 MAP kinase signaling cascade. Further studies of downstream pathways controlling proteoglycan synthesis may identify potential therapeutic targets for the prevention of atherosclerosis and cardiovascular disease.  相似文献   

2.
3.
Transforming growth factor-beta (TGF-beta) has been reported to be involved in the pathogenesis of cardiovascular proliferative diseases such as hypertensive vascular disease, atherosclerosis, and arterial restenosis after angioplasty. We designed a 38-base DNA-RNA chimeric hammerhead ribozyme to cleave human TGF-beta1 mRNA as a gene therapy for human arterial proliferative diseases. In the presence of MgCl(2), synthetic ribozyme to human TGF-beta1 mRNA cleaved the synthetic target RNA into two RNA fragments of predicted size. A control mismatch ribozyme, with one different base in the catalytic loop region, was inactive. DNA-RNA chimeric ribozyme (0. 01-1.0 microM) significantly inhibited angiotensin II (Ang II)-stimulated DNA synthesis in a dose-dependent manner in human vascular smooth muscle cells (VSMC). The mismatch ribozyme did not affect Ang II-stimulated DNA synthesis in the cells. DNA-RNA chimeric ribozyme (1.0 microM) inhibited the proliferation of human VSMC in the presence of Ang II. DNA-RNA chimeric ribozyme (1.0 microM) significantly inhibited Ang II-stimulated TGF-beta1 mRNA and protein expression in human VSMC. These results indicate that the designed DNA-RNA chimeric hammerhead ribozyme targeted to human TGF-beta1 mRNA can effectively and potentially inhibit growth of human VSMC by cleaving the TGF-beta1 mRNA. This finding suggests that this ribozyme will be useful in the gene therapy of arterial proliferative diseases.  相似文献   

4.
5.
6.
In many types of cardiovascular pathophysiology such as hypercholesterolemia and atherosclerosis, diabetes, cigarette smoking, or hypertension (with its sequelae stroke and heart failure) the expression of endothelial NO synthase (eNOS) is altered. Both up- and downregulation of eNOS have been observed, depending on the underlying disease. When eNOS is upregulated, the upregulation is often futile and goes along with a reduction in bioactive NO. This is due to an increased production of superoxide generated by NAD(P)H oxidase and by an uncoupled eNOS. A number of drugs with favorable effects on cardiovascular disease upregulate eNOS expression. The resulting increase in vascular NO production may contribute to their beneficial effects. These compounds include statins, angiotensin-converting enzyme inhibitors, AT1 receptor antagonists, calcium channel blockers, and some antioxidants. Other drugs such as glucocorticoids, whose administration is associated with cardiovascular side effects, downregulate eNOS expression. Stills others such as the immunosuppressants cyclosporine A and FK506/tacrolimus or erythropoietin have inconsistent effects on eNOS. Thus regulation of eNOS expression and activity contributes to the overall action of several classes of drugs, and the development of compounds that specifically upregulate this protective enzyme appears as a desirable target for drug development.  相似文献   

7.
8.
TGF-beta in diabetic kidney disease: role of novel signaling pathways   总被引:7,自引:0,他引:7  
Diabetic nephropathy is the leading cause of end-stage renal disease in the United States and is a major contributing cause of morbidity and mortality in patients with diabetes. Despite conventional therapy to improve glycemic and blood pressure control the incidence of diabetic nephropathy is reaching epidemic proportions worldwide. As the major pathologic feature of diabetic nephropathy is diffuse mesangial matrix expansion, the pro-sclerotic cytokine transforming growth factor-beta, TGF-beta, is a leading candidate to mediate the progression of the disease. Numerous studies have now demonstrated that TGF-beta is a key factor in experimental models of diabetic kidney disease as well as in patients with diabetic nephropathy. Recent studies have begun to explore the mechanisms by which TGF-beta is stimulated by high glucose and how TGF-beta exerts its matrix-stimulating effects on renal cells. TGF-beta may also be involved in mediating the vascular dysfunction of diabetic kidney disease via its effects on the key intracellular calcium channel, the inositol trisphosphate receptor (IP(3)R). As there is substantial evidence for a cause and effect relationship between upregulation of TGF-beta and the progression of diabetic kidney disease, future studies will seek to establish specific targets along these pathways at which to intervene.  相似文献   

9.
10.
Evidence suggests that certain flavan-3-ols and procyanidins (FP) can have a positive influence on cardiovascular health. It has been previously reported that FP isolated from cocoa can potentially modulate the level and production of several signaling molecules associated with immune function and inflammation, including several cytokines and eicosanoids. In the present study, we examined whether FP fractions monomers through decamers modulate secretion of the cytokine transforming growth factor (TGF)-beta(1) from resting human peripheral blood mononuclear cells (PBMC). A total of 13 healthy subjects were studied and grouped according to their baseline production of TGF-beta(1). When cells from individuals with low baseline levels of TGF-beta(1) (n = 7) were stimulated by individual FP fractions (25 microg/ml), TGF-beta(1) release was enhanced in the range of 15%-66% over baseline (P < 0.05; monomer, dimer, and tetramer). The low-molecular-weight FP fractions (or=hexamer), with the monomer and dimer inducing the greatest increases (66% and 68%, respectively). In contrast to the above, TGF-beta(1) secretion from high TGF-beta(1) baseline subjects (n = 6) was inhibited by individual FP fractions (P < 0.05; trimer through decamer). The inhibition was most pronounced with trimeric through decameric fractions (28%-42%), and monomers and dimers moderately inhibited TGF-beta(1) release (17% and 23%, respectively). Given the vascular actions associated with TGF-beta(1), we suggest that in healthy individuals, homeostatic modulation of its production by FP offers an additional mechanism by which FP-rich foods can potentially benefit cardiovascular health.  相似文献   

11.
Human T-cell lymphotropic virus type I (HTLV-I) has been associated with an adult form of T-cell leukemia as well as tropical spastic paraparesis, a neurodegenerative disease. Adult T-cell leukemia patients express high levels of the type 1 isoform of transforming growth factor-beta (TGF-beta 1), which is mediated by the effects of the HTLV-I Tax transactivator protein on the TGF-beta 1 promoter. To understand further the regulation of TGF-beta 1 expression by Tax, we examined its expression in transgenic mice carrying the HTLV-I tax gene. We show that tumors from these mice and other tissues, such as submaxillary glands and skeletal muscle, which express high levels of tax mRNA selectively express high levels of TGF-beta 1 mRNA and protein. Moreover, TGF-beta 1 significantly stimulated the incorporation of tritiated thymidine into one of three cell lines derived from neurofibromas of tax-transgenic mice, which suggests that the excessive production of TGF-beta 1 may play a role in tumorigenesis and that these mice may serve as a useful model for studying the biological effects of TGF-beta in vivo.  相似文献   

12.
Angiotensin II (Ang II) is involved in the development of cardiovascular disease and vascular remodeling. In this study, we demonstrate that treatment of human adipose tissue-derived mesenchymal stem cells (hADSCs) with Ang II increased the expression of smooth muscle-specific genes, including alpha-smooth muscle actin (alpha-SMA), calponin, h-caldesmon, and smooth muscle myosin heavy chain (SM-MHC), and also elicited the secretion of transforming growth factor-beta1 (TGF-beta1) and delayed phosphorylation of Smad2. The Ang II-induced expression of alpha-SMA and delayed phosphorylation of Smad2 were blocked by pretreatment of the cells with a TGF-beta type I receptor kinase inhibitor, SB-431542, small interference RNA-mediated depletion of endogenous Smad2, and adenoviral expression of Smad7. Furthermore, the Ang II-induced TGF-beta1 secretion, alpha-SMA expression, and delayed phosphorylation of Smad2 in hADSCs were abrogated by the MEK inhibitor U0126, suggesting a pivotal role of MEK/ERK pathway in the Ang II-induced activation of TGF-beta1-Smad2 signaling pathway. The smooth muscle-like cells which were differentiated from hADSCs by Ang II treatment exhibited contraction in response to 60mM KCl. These results suggest that Ang II induces differentiation of hADSCs to contractile smooth muscle-like cells through ERK-dependent activation of the autocrine TGF-beta1-Smad2 crosstalk pathway.  相似文献   

13.
Dupuytren's disease, a benign fibroproliferative disorder of the palmar fascia, represents an ideal model to study tissue fibrosis. Transforming growth factor-beta1 (TGF-beta1) and its downstream Smad signalling system is well established as a key player during fibrogenesis. Thus, targeting this basic pathomechanism seems suitable to establish new treatment strategies. One such promising treatment involves the substance N-acetyl-L-cysteine (NAC), shown to have antifibrotic properties in hepatic stellate cells and rat fibroblasts. In order to investigate antifibrotic effects of N-acetyl-L-cysteine (NAC), fibroblasts were isolated from surgically resected fibrotic palmar tissues (Dupuytren fibroblasts, DF) and exposed to different concentrations of NAC and recombinant TGF-beta1. Fibroblasts isolated from tendon pulleys served as controls (control fibroblasts, CF). Smad signalling was investigated by a Smad binding element driven reporter gene analysis. Both cell types express TGF-beta1, indicating autocrine signalling in DF and CF. This was confirmed by comparing reporter gene activity from LacZ and Smad7 adenovirus infected cells. NAC treatment resulted in abrogation of Smad mediated signalling comparable to ectopically overexpressed Smad7, even when the cells were stimulated with recombinant TGF-beta1 or ectopically expressed a constitutively active TGF-beta receptor type I. Additionally, NAC dose-dependently decreased expression of three major indicators of impaired fibrotic matrix turnover, namely alpha-smooth muscle actin (alpha-SMA), alpha 1 type I procollagen (Col1A1), and plasminogen activator inhibitor-type I (PAI-1). Our results suggest that TGF-beta signalling and subsequent expression of fibrogenesis related proteins in Dupuytren's disease is abrogated by NAC thus providing a basis for a therapeutic strategy in Dupuytren's disease and other fibroproliferative disorders.  相似文献   

14.
Enhanced expression of transforming growth factor-beta1 (TGF-beta1) demonstrated in human colonic mucosa of patients with ulcerative colitis (UC), indicates its possible significance in the pathogenesis of this disease. The aim of this study was to evaluate plasma TGF-beta1 concentration in patients with different degrees of colonic mucosal injury, as a possible indicator of ulcerative colitis activity. TGF-beta1 concentration was measured with an enzyme immunoassay (EIA) in plasma of 45 patients with endoscopically confirmed UC. Values observed in UC patients (40.5+/-15.9 ng/ml) were significantly higher than in healthy people (18.3+/-11.6 ng/ml) and higher than in patients with irritable colon syndrome (ICS), (20.5+/-13.6 ng/ml). The highest plasma TGF-beta1 (58.6+/-112.1 ng/ml) was in patients with the severe UC course. TGF-beta1 level analysed in all UC patients revealed significant positive correlation with scored degree of mucosal injury (r=0.396;P<0.01). Among other possible laboratory markers of the disease activity, only C-reactive protein concentration demonstrated significant correlation. Enhanced production of TGF-beta1 can be related to inflammation activity. Measurement of plasma TGF-beta1 may be considered as a biomarker of the disease activity.  相似文献   

15.
16.
Experimental allergic encephalomyelitis (EAE) is an autoimmune disease characterized by inflammation and demyelination in the central nervous system. The effect of the immunosuppressive molecule transforming growth factor-beta, (TGF-beta 1) on chronic relapsing EAE produced by the transfer of myelin basic protein-specific T cell lines was studied. TGF-beta 1 markedly inhibited the activation and proliferation of myelin-basic protein-specific lymph node cells in vitro. This reduced the capacity of these cells to transfer EAE. In addition, administration of TGF-beta 1 in vivo consistently resulted in an improved clinical course, even when given during ongoing disease. Immunopathologic study demonstrated a marked reduction in central nervous system damage and expression of cell-surface lymphocyte function-associated Ag-1 and class II MHC molecules in TGF-beta 1-treated mice. These findings have identified TGF-beta 1 as a possible therapeutic agent for the human demyelinating disease multiple sclerosis.  相似文献   

17.
Soluble endoglin contributes to the pathogenesis of preeclampsia   总被引:28,自引:0,他引:28  
Preeclampsia is a pregnancy-specific hypertensive syndrome that causes substantial maternal and fetal morbidity and mortality. Maternal endothelial dysfunction mediated by excess placenta-derived soluble VEGF receptor 1 (sVEGFR1 or sFlt1) is emerging as a prominent component in disease pathogenesis. We report a novel placenta-derived soluble TGF-beta coreceptor, endoglin (sEng), which is elevated in the sera of preeclamptic individuals, correlates with disease severity and falls after delivery. sEng inhibits formation of capillary tubes in vitro and induces vascular permeability and hypertension in vivo. Its effects in pregnant rats are amplified by coadministration of sFlt1, leading to severe preeclampsia including the HELLP (hemolysis, elevated liver enzymes, low platelets) syndrome and restriction of fetal growth. sEng impairs binding of TGF-beta1 to its receptors and downstream signaling including effects on activation of eNOS and vasodilation, suggesting that sEng leads to dysregulated TGF-beta signaling in the vasculature. Our results suggest that sEng may act in concert with sFlt1 to induce severe preeclampsia.  相似文献   

18.
Chronic renal disease is characterized by the accumulation of extracellular matrix proteins in the kidney and a loss of renal function. Tubulointerstitial fibrosis has been reported to play an important role in the progression of chronic renal diseases. Transforming growth factor-beta1 (TGF-beta1) is a profibrotic cytokine playing a major contribution to fibrotic kidney disease. Endoglin is a membrane glycoprotein of the TGF-beta1 receptor system. The aim of this work was to determine the time-course expression of renal type I and IV collagens, endoglin and TGF-beta1 in a rat model of induced tubulointerstitial fibrosis at 1, 3, 10 and 17 days after unilateral ureteral obstruction (UUO). In 17 days-ligated (L)-renal samples, a marked interstitial fibrosis was detected by Masson's trichromic and Sirius red staining, accompanied by an increase in type I collagen expression as shown by immunohistochemical analysis. Northern blot studies revealed a progressive increase in collagen alpha2(I), TGF-beta1 and endoglin mRNA expression in L kidneys when compared with the corresponding non-ligated (NL) kidneys from the animals subjected to left UUO. Seventeen days after UUO, significant increases in collagen alpha2(I), collagen alpha1(IV), TGF-beta1 and endoglin mRNA levels were detected in L kidneys vs NL kidneys. Significantly higher levels of the protein endoglin were found in L kidneys than in NL kidneys 10 and 17 days following obstruction. A marked increase expression for endoglin and TGF-beta1 was localized in renal interstitium by immunohistochemical studies 17 days after obstruction. In conclusion, this work reports the upregulation of endoglin coincident to that of its ligand TGF-beta1 in the kidneys of rats with progressive tubulointerstitial fibrosis induced by UUO.  相似文献   

19.
20.
The generation of mice lacking specific components of the transforming growth factor-beta (TGF-beta) signal tranduction pathway shows that TGF-beta is a key player in the development and physiology of the cardiovascular system. Both pro- and anti-angiogenic properties have been ascribed to TGF-beta, for which the molecular mechanisms are unclear. Here we report that TGF-beta can activate two distinct type I receptor/Smad signalling pathways with opposite effects. TGF-beta induces phosphorylation of Smad1/5 and Smad2 in endothelial cells and these effects can be blocked upon selective inhibition of ALK1 or ALK5 expression, respectively. Whereas the TGF-beta/ALK5 pathway leads to inhibition of cell migration and proliferation, the TGF-beta/ALK1 pathway induces endothelial cell migration and proliferation. We identified genes that are induced specifically by TGF-beta-mediated ALK1 or ALK5 activation. Id1 was found to mediate the TGF-beta/ALK1-induced (and Smad-dependent) migration, while induction of plasminogen activator inhibitor-1 by activated ALK5 may contribute to the TGF-beta-induced maturation of blood vessels. Our results suggest that TGF-beta regulates the activation state of the endothelium via a fine balance between ALK5 and ALK1 signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号