首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The selective separation of whey proteins was studied using colloidal gas aphrons generated from the cationic surfactant cetyl trimethyl ammonium bromide (CTAB). From the titration curves obtained by zeta potential measurements of individual whey proteins, it was expected to selectively adsorb the major whey proteins, i.e., bovine serum albumin, alpha-lactalbumin, and beta-lactoglobulin to the aphrons and elute the remaining proteins (lactoferrin and lactoperoxidase) in the liquid phase. A number of process parameters including pH, ionic strength, and mass ratio of surfactant to protein (M(CTAB)/M(TP)) were varied in order to evaluate their effect on protein separation. Under optimum conditions (2 mmol/l CTAB, M(CTAB)/M(TP) = 0.26-0.35, pH 8, and ionic strength = 0.018 mol/l), 80-90% beta-lactoglobulin was removed from the liquid phase as a precipitate, while about 75% lactoferrin and lactoperoxidase, 80% bovine serum albumin, 95% immunoglobulin, and 65% alpha-lactalbumin were recovered in the liquid fraction. Mechanistic studies using zeta potential measurements and fluorescence spectroscopy proved that electrostatic interactions modulate only partially the selectivity of protein separation, as proteins with similar surface charges do not separate to the same extent between the two phases. The selectivity of recovery of beta-lactoglobulin probably occurs in two steps: the first being the selective interaction of the protein with opposite-charged surfactant molecules by means of electrostatic interactions, which leads to denaturation of the protein and subsequent formation and precipitation of the CTAB-beta-lactoglobulin complex. This is followed by the separation of CTAB-beta-lactoglobulin aggregates from the bulk liquid by flotation in the aphron phase. In this way, CGAs act as carriers which facilitate the removal of protein precipitate.  相似文献   

2.
Colloidal gas aphrons (CGA), which are surfactant stabilised microbubbles, have been previously applied for the recovery of proteins from model mixtures and a few studies have demonstrated the potential of these dispersions for the selective recovery of proteins from complex mixtures. However there is a lack of understanding of the mechanism of separation and forces governing the selectivity of the separation. In this paper a mechanistic study is carried out to determine the main factors and forces influencing the selectivity of separation of whey proteins with CGA generated from ionic surfactants. Two different separation strategies were followed: (i) separation of lactoferrin and lactoperoxidase by anionic CGA generated from a solution of sodium bis-(2-ethyl hexyl) sulfosuccinate (AOT); (ii) separation of beta-lactoglobulin by cationic CGA generated from a solution of cetyltrimethylammonium bromide (CTAB). Separation results indicate that electrostatic interactions are the main forces determining the selectivity however these could not completely explain the selectivities obtained following both strategies. Protein-surfactant interactions were studied by measuring the zeta potential changes on individual proteins upon addition of surfactant and at varying pH. Interestingly strongest electrostatic interactions were measured at those pH and surfactant to protein mass ratios which were optimum for protein separation. Effect of surfactant on protein conformation was determined by measuring the change in fluorescence intensity upon addition of surfactant at varying pH. Differences in the fluorescence patterns were detected among proteins which were correlated to differences in their conformational features which could in turn explain their different separation behaviour. The effect of conformation on selectivity was further proven by experiments in which conformational changes were induced by pre-treatment of whey (heating) and by storage at 4 degrees C. Overall it can be concluded that separation of proteins by ionic CGA is driven mainly by electrostatic interactions however conformational features will finally determine the selectivity of the separation with competitive adsorption having also an effect.  相似文献   

3.
Two separation techniques, foam separation and colloidal gas aphrons (CGAs), both of which are based on gas–liquid dispersions, are compared as potential applications for protein recovery in downstream processing. The potential advantages of each method are described and the concentration and selectivity achieved with each method, for a range of proteins is discussed. The physical basis of foam separation is the preferential adsorption of surface active species at a gas–liquid interface, with surface inactive species remaining in bulk solution. When a solution containing surface active species is sparged with gas, a foam is produced at the surface: this foam can be collected, and upon collapse contains surface active species in a concentrated form. CGAs are microbubble dispersions (bubble diameters 10–100 μm) with high gas hold ups (>50%) and relatively high stability, which are formed by stirring a surfactant solution at speeds above a critical value (typically around 5000 rpm). It is expected that when proteins are brought into contact with aphrons, protein adsorbs to the surfactant through electrostatic and/or hydrophobic forces. The aphron phase can be separated easily from the bulk solution due to its buoyancy, thus allowing separation of protein in a concentrated form.  相似文献   

4.
A mild and rapid method is described for isolating various milk proteins from bovine rennet whey. beta-Lactoglobulin from bovine rennet whey was easily adsorbed on and desorbed from a weak anion exchanger, diethylaminoethyl-Toyopearl. However, alpha-lactalbumin could not be adsorbed onto the resin. alpha-Lactalbumin and beta-lactoglobulin from rennet whey could also be adsorbed and separated using a strong anion exchanger, quaternary aminoethyl-Toyopearl. The rennet whey was passed through a strong cation exchanger, sulphopropyl-Toyopearl, to separate lactoperoxidase and lactoferrin. alpha-Lactalbumin and beta-lactoglobulin were adsorbed onto quaternary aminoethyl-Toyopearl. alpha-Lactalbumin was eluted using a linear (0-0.15 M) concentration gradient of NaCl in 0.05 M Tris-HCl buffer (pH 8.5). Subsequently, beta-lactoglobulin B and beta-lactoglobulin A were eluted from the column with 0.05 M Tris-HCl (pH 6.8), using a linear (0.1-0.25 M) concentration gradient of NaCl. The yields were 1260 mg alpha-lactalbumin, 1290 mg beta-lactoglobulin B and 2280 mg beta-lactoglobulin A from 1 l rennet whey.  相似文献   

5.
The development of a downstream process for the isolation of bovine lactoferrin (bLF) from sweet whey is presented. Whey is a by‐product from the cheese manufacturing process that is often used to produce whey protein concentrate powders for food applications. Besides the major whey proteins such as lactalbumin or BSA, minor whey proteins are present such as lactoperoxidase and bLF. In addition to the well‐known biological functions as an antimicrobial and antiviral agent, bLF shows immunomodulatory functions in the host defence system. For the isolation of bLF, a two‐step downstream process was developed based on membrane systems. This paper discusses the application of several membrane types for a crossflow filtration of sweet whey to remove insoluble particles and lipids from the whey with the aim of obtaining a permeate which can be directly used for downstreaming the minor component via ion exchange membrane adsorber systems. The application of such a membrane adsorber is demonstrated.  相似文献   

6.
The current work deals with downstream processing of lactoperoxidase using liquid emulsion membrane from the bovine milk whey, which is a by-product from dairy industry. It is an alternate separation technique that can be used for the selective extraction of lactoperoxidase. The extraction of lactoperoxidase in liquid emulsion membrane takes place due to the electrostatic interaction between the enzyme and polar head group of reverse micellar surfactant. The optimum conditions resulted in 2.86 factor purity and activity recovery of 75.21%. Downstream processing involving liquid emulsion membrane is a potential technique for the extraction of lactoperoxidase from bovine whey.  相似文献   

7.
Extraction and purification of high‐value minor proteins directly from milk without pre‐treatment is a challenge for the dairy industry. Pre‐treatment of milk before extraction of proteins by conventional packed‐bed chromatography is usually necessary to prevent column blockage but it requires several steps that result in significant loss of yield and activity for many minor proteins. In this paper, we demonstrate that it is possible to pass 40–50 column volumes of various milk samples (raw whole milk, homogenized milk, skim milk and acid whey) through a 5 mL cryogel chromatographic column at 550 cm/h without exceeding its pressure limits if the processing temperature is maintained above 35°C. The dynamic binding capacity obtained for the cryogel matrix (2.1 mg/mL) was similar to that of the binding capacity (2.01 mg/mL) at equilibrium with 0.1 mg/mL of lactoferrin in the feed samples. The cryogel column selectively binds lactoferrin and lactoperoxidase with only minor leakage in flowthrough fractions. Lactoferrin was recovered from elution fractions with a yield of over 85% and a purity of more than 90%. These results, together with the ease of manufacture, low cost and versatile surface chemistry of cryogels suggest that they may be a good alternative to packed‐bed chromatography for direct capture of proteins from milk. Biotechnol. Bioeng. 2009;103: 1155–1163. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
Micellar liquid chromatography (MLC) using Tween 20 as surfactant was evaluatd as a biocompatible sample pretreatment preceding immunoassay in order to obtain an increased selectivity of the assay and a simplification of the sample pretreatment procedure. Different stationary phases and chromatographic conditions were studied for the separation of budesonide and cortisol and some steroids known to interfere in immunoassay of these compounds. The separation was dependent on several parameters, for example, temperature, the concentration of Tween 20, pH and ionic strength of the mobile phase, and nature of the stationary phase. A precolumn venting system was used, which allowed for 140 direct injections of 25 μl of human blood plasma, without loss of chromatographic performance. Results obtained from the coupling of MLC to an immunoassay for cortisol illustrates the selectivity which can be obtained, and that simplification of the sample pretreatment is possible using this technique.  相似文献   

9.
Lactoferrin is an important nutriceutical with various physiological functions. It is present in whey at very low concentrations. This work describes a mixed-mode (hydroxyapatite) chromatography method for one-column fractionation of lactoferrin from whey. Lactoperoxidase, a protein with similar molecular weight and isoelectric point, was initially desorbed from the matrix under isocratic conditions. Lactoferrin was obtained in homogeneity without lactoperoxidase activity and free from other major whey proteins such as alpha lactoalbumin and beta lactoglobulin.  相似文献   

10.
Whey proteins as a model system for chromatographic separation of proteins   总被引:1,自引:0,他引:1  
Although chromatographic separation of whey proteins has been considered too expensive, whey may serve as an excellent model mixture to investigate and validate the use of simulation tools in the development and optimization of chromatographic separations and the outcome could easily be utilized since the model system has an intrinsic value. Besides, milk from transgenic animals could be an attractive source of pharmaceuticals which must be separated from the other proteins in the milk. Several whey proteins are of interest especially, alpha-lactalbumin, beta-lactoglobulins, immunoglobulins, lactoperoxidase, and lactoferrin. The scope of the project is to develop a consistent set of chromatographic data for whey proteins including isotherms, transport properties and scale-up studies and to develop the appropriate models for the anion exchangers Q-Sepharose XL, Source 30Q, Ceramic Q-HyperD F, and Merck Fractogel EMD TMAE 650 (S). In this work we have determined and correlated gradient and isocratic retention volumes in the linear range of the isotherm for alpha-lactalbumin, beta-lactoglobulin A and B, and bovine serum albumin at a pH from 6 to 9 at various NaCl concentrations.  相似文献   

11.
A method for the recovery and fractionation of whey proteins from a whey protein concentrate (80%, w/w) by hydrophobic interaction chromatography is proposed. Standard proteins and WPC 80 dissolved in phosphate buffer with ammonium sulfate 1 M were loaded in a HiPrep Octyl Sepharose FF column coupled to a fast protein liquid chromatography (FPLC) system and eluted by decreasing the ionic strength of the buffer using a salt gradient. The results showed that the most hydrophobic protein from whey is α-lactalbumin and the less hydrophobic is lactoferrin. It was possible to recover 45.2% of β-lactoglobulin using the HiPrep Octyl Sepharose FF column from the whey protein concentrate mixture with 99.6% purity on total protein basis.  相似文献   

12.
In this study we describe the design, preparation and testing of superparamagnetic anion-exchangers, and their use together with cation-exchangers in the fractionation of bovine whey proteins as a model study for high-gradient magnetic fishing. Adsorbents prepared by attachment of trimethyl amine to particles activated in sequential reactions with allyl bromide and N-bromosuccinimide yielded a maximum bovine serum albumin binding capacity of 156 mg g(-1) combined with a dissociation constant of 0.60 microM, whereas ion-exchangers created by linking polyethylene imine through superficial aldehydes bound up to 337 mg g(-1) with a dissociation constant of 0.042 microM. The latter anion-exchanger was selected for studies of whey protein fractionation. In these, crude bovine whey was treated with a superparamagnetic cation-exchanger to adsorb basic protein species, and the supernatant arising from this treatment was then contacted with the anion-exchanger. For both adsorbent classes of ion-exchanger, desorption selectivity was subsequently studied by sequentially increasing the concentration of NaCl in the elution buffer. In the initial cation-exchange step quantitative removal of lactoferrin (LF) and lactoperoxidase (LPO) was achieved with some simultaneous binding of immunoglobulins (Ig). The immunoglobulins were separated from the other two proteins by desorbing with a low concentration of NaCl (< or = 0.4 M), whereas lactoferrin and lactoperoxidase were co-eluted in significantly purer form, e.g. lactoperoxidase was purified 28-fold over the starting material, when the NaCl concentration was increased to 0.4-1 M. The anion-exchanger adsorbed beta-lactoglobulin (beta-LG) selectively allowing separation from the remaining protein.  相似文献   

13.
The reduction of lactoperoxidase with sodium dithionite has been studied by means of stopped-flow spectrophotometry in an anaerobic system. Under pseudo-first-order conditions the rate constant was found to be linearly dependent on the square root of the dithionite concentration, which confirms the monomeric radical, SO2- as the reducing species. The second-order rate constant is moderately influenced by increased ionic strength but drastically increased at lower pH. The pH dependence supports the previously suggested existence of a carboxyl group, essential to the different enzymatic functions of lactoperoxidase. The second-order rate constant for the reduction of lactoperoxidase at pH 7.0 (kappa 1 = 1.3 X 10(5) M-1 s-1) was about three times higher than the rate constant for the reduction of cyanide-bound lactoperoxidase and two times the rate constant for the reduction of the fluoride-lactoperoxidase complex.  相似文献   

14.
A mild and rapid method is described for isolating various milk proteins from bovine rennet whey. β-Lactoglobulin from bovine rennet whey was easily adsorbed on and desorbed from a weak anion exchanger, diethylaminoethyl-Toyopearl. However, α-lactalbumin could not be adsorbed onto the resin. α-Lactalbumin and β-lactoglobulin from rennet whey could also be adsorbed and separated using a strong anion exchanger, quaternary aminoethyl-Toyopearl. The rennet whey was passed through a strong cation exchanger, sulphopropyl-Toyopearl, to separate lactoperoxidase and lactoferrin. α-Lactalbumin and β-lactoglobulin were adsorbed onto quaternary aminoethyl-Toyopearl. α-Lactalbumin was eluted using a linear (0–0.15 M) concentration gradient of NaCl in 0.05 M Tris–HCl buffer (pH 8.5). Subsequently, β-lactoglobulin B and β-lactoglobulin A were eluted from the column with 0.05 M Tris–HCl (pH 6.8), using a linear (0.1–0.25 M) concentration gradient of NaCl. The yields were 1260 mg α-lactalbumin, 1290 mg β-lactoglobulin B and 2280 mg β-lactoglobulin A from 1 l rennet whey.  相似文献   

15.
Although protein fractionation by selective membrane filtration has numerous potential applications in both the downstream processing of fermentation broths and the purification of plasma proteins, the selectivity for proteins with only moderately different molecular weights has generally been quite poor. We have obtained experimental data for the transport of bovine serum albumin (BSA) and immunoglobulins (IgG) through 100,000 and 300,000 molecular weight cutoff polyethersulfone membranes in a stirred ultrafiltration device at different solution pH and ionic strength. The selectivity was a complex function of the flux due to the simultaneous convective and diffusive solute transport through the membrane and the bulk mass transfer limitations in the stirred cell. Under phsioligical conditions (pH 7.0 and 0.15 M NaCI) the maximum selectivity for the BSA-IgG separation was only about 2.0 due primarily to the effects of protein adsorption. In contrast, BSA-IgG selectivities as high as 50 were obtained with the same membranes when the protein solution was at pH 4.8 and 0.0015 M NaCl. This enhanced selectivity was a direct result of the electrosatatic contributions to both bulk and membrane transport. The membrane selectivity could actually be reversed, with higher passage of the larger IgG molecules, by using a 300,000 molecular weight cutoff membrane at pH 7.4 and an ionic strength of 0.0015 M NaCl. These results clearly demonstrate that the effectiveness of selective protein filtration can be dramatically altered by appropriately controlling electrostatic interactions through changes in pH and/or ionic strength. (c) 1994 John Wiley & Sons, Inc.  相似文献   

16.
Phase transfer studies were conducted to evaluate the solubilization of soy hull peroxidase (SHP) in reverse micelles formed in isooctane/butanol/hexanol using the cationic surfactant cetyltrimethylammonium bromide (CTAB). The effect of various parameters such as pH, ionic strength, surfactant concentration of the initial aqueous phase for forward extraction and buffer pH, type and concentration of salt, concentration of isopropyl alcohol and volume ratio for back extraction was studied to improve the efficiency of reverse micellar extraction. The active SHP was recovered after a complete cycle of forward and back extraction. A forward extraction efficiency of 100%, back extraction efficiency of 36%, overall activity recovery of 90% and purification fold of 4.72 were obtained under optimised conditions. Anionic surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) did not yield good results under the conditions studied. The phase transfer of soy hull peroxidase was found to be controlled by electrostatic and hydrophobic interactions during forward and back extraction respectively.  相似文献   

17.
Wan Y  Ghosh R  Cui Z 《Biotechnology progress》2004,20(4):1103-1112
The fractionation of the plasma proteins human serum albumin (HSA) and human immunoglobulins (HIgG) using the combination of two newly developed techniques, pulsed sample injection technique and carrier phase ultrafiltration (CPUF), is discussed in this paper. The effects of pH and ionic strength on the transmission of a single protein (i.e., either HSA or HIgG) through 100 and 300 kDa MWCO polyethersulfone (PES) membranes were quantified using the pulsed sample injection technique. The experimental results thus obtained suggested that it would be possible to fractionate these proteins by optimizing the solution pH and ionic strength. With 100 and 300 kDa PES membranes, effective separation of HSA and HIgG was achieved by CPUF using suitable conditions, i.e., pH 4.7 and low salt concentration. The fractionation of HSA and HIgG by "reverse selectivity" using 300 kDa membranes was also examined.  相似文献   

18.
Ideal size-exclusion chromatography separates molecules primarily on the basis of hydrodynamic volume. This is achieved only when the chromatographic support is neutral and the polarity nearly equal to that of the mobile phase. When this is not the case, the support surface may begin to play a role in the separation process. As the magnitude of surface contributions becomes larger, the deviation from the ideal increases. Because the separation mechanism is different than that of ideal size-exclusion chromatography, selectivity could be increased in nonideal size-exclusion chromatography. This paper explores the use of size-exclusion chromatography columns with mobile phases that cause proteins to exhibit slight deviations from the ideal size-exclusion mechanism. Although there are many ways to initiate nonideal size-exclusion behavior, the specific variable examined in this study is the influence of pH at low ionic strength. Individual proteins were chromatographed on SynChrom GPC-100, TSK-G2000SW, and TSK-G3000SW columns at low ionic strength. It was found that a protein could be selectively adsorbed, ion excluded, or chromatographed in an ideal size-exclusion mode by varying mobile-phase pH relative to the isoelectric point of the protein. In extreme cases, molecules could be induced either to elute in the void volume or beyond the volume of total permeation. It is postulated that these effects are the result of electrostatic interactions between proteins and surface silanols on the support surface. Optimization of size-exclusion separations relative to protein isoelectric points is discussed.  相似文献   

19.
The purification of lactoferrin from human whey by batch extraction   总被引:5,自引:0,他引:5  
The isolation of lactoferrin from human whey has been accomplished using a rapid two-step procedure. The lactoferrin is directly adsorbed to cellulose phosphate by batch extraction and eluted by a stepped salt and pH gradient. The major impurity, a low-molecular-weight fraction, is quickly removed by gel filtration. The recovered lactoferrin has a purity of about 96%. The yield of lactoferrin averaged 80%. This method of lactoferrin purification greatly reduces the labor and time required, and the procedure is easily scaled to any volume of starting material.  相似文献   

20.
Colloidal gas aphrons: A novel approach to protein recovery   总被引:3,自引:0,他引:3  
Sebba (1987) defined colloidal gas aphrons (CGA) as microbubbles stabilized by surfactant layers, which are created by stirring surfactant solutions at speeds greater than a critical value. A high shear impeller is used for stirring and critical values for the impeller speed must be exceeded to create these stable gas liquid dispersions (typically >5000 rpm). Although there have been no previous reports of direct protein recovery using CGA, it is likely that, with appropriate choice of surfactant, proteins should adsorb to these surfactant bubbles by means of electrostatic and/or hydrophobic interactions. This is the basis of this study, in which the use of CGA for protein recovery from aqueous solution is considered. A surfactant which has been characterized previously for generation of CGA was chosen (Jauregi et al., 1997), i.e., the anionic surfactant sodium bis-(2-ethyl hexyl) sulfosuccinate (AOT). Lysozyme, a well-characterized protein, was chosen as the protein to be recovered. Lysozyme was recovered successfully from aqueous solution using CGA generated from AOT. At optimum conditions, lysozyme recovery, enrichment ratio, and separation ratio were 95%, 19 and 302 respectively, with enzyme activity maintained. These results indicate the exciting potential of this technique. A wide range of process conditions including initial concentration of protein and surfactant, surfactant/protein molar ratio, pH, and ionic strength were considered. High recoveries and enrichments were generally obtained at protein concentrations 0.11 mg/mL. However, at high ionic strength (0.29M) poor separation and recoveries were obtained at low protein concentrations (counter-ions diminishing electrostatic interactions between protein and aphrons at this condition). In general, (ns/np)a was determined to be between 10 and 16 for experiments in which high levels of recovery/separation parameters were found. For most conditions, protein precipitation was observed; however, this precipitate could be resolubilized without loss of enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号