首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
9-cis Retinoic acid (RA) induces gene expression in neuroblastoma cells more effectively and with different kinetics than other RA isomers, and could be acting in part through Retinoid X Receptors (RXRs). The aim of this study was to characterise the effects of an RXR agonist and RXR homodimer antagonist on the induction of cellular RA binding protein II (CRABP-II) and RA receptor-beta (RARbeta) in neuroblastoma cells in response to different retinoids. The RXR agonist, LDG1069, was as effective as all-trans RA in inducing gene expression, but less effective than 9-cis RA. The RXR-homodimer antagonist, LG100754, inhibited the induction of CRABP-II mRNA in SH-SY5Y neuroblastoma cells by 9-cis RA or the RXR-specific agonist LGD1069, but had no effect when used with all-trans RA. Conversely, LG100754 did not inhibit induction of RARbeta mRNA by 9-cis or all-trans RA, or by LGD1069. RAR- and RXR-specific ligands used together induced CRABP-II and RARbeta as effectively as 9-cis RA. These results demonstrate the value of combining RXR- and RAR-specific ligands to regulate RA-inducible gene expression. The possibility that RXR-homodimers mediate, in part, the induction of CRABP-II by 9-cis RA and RXR-specific ligands is discussed.  相似文献   

2.
3.
4.
Mesenchymal stem cells (MSCs) can differentiate into neurons in an appropriate cellular environment. Retinoid signaling pathway is required in neural development. However, the effect and mechanism through retinoid signaling regulates neuronal differentiation of MSCs are still poorly understood. Here, we report that all‐trans‐retinoic acid (ATRA) pre‐induction improved neuronal differentiation of rat MSCs. We found that, when MSCs were exposed to different concentrations of ATRA (0.01–100 μmol/L) for 24 h and then cultured with modified neuronal induction medium (MNM), 1 μmol/L ATRA pre‐induction significantly improved neuronal differentiation efficiency and neural‐cell survival. Compared with MNM alone induced neural‐like cells, ATRA/MNM induced cells expressed higher levels of Nestin, neuron specific enolase (NSE), microtubule‐associated protein‐2 (MAP‐2), but lower levels of CD68, glial fibrillary acidic protein (GFAP), and glial cell line‐derived neurotrophic factor(GDNF), also exhibited higher resting membrane potential and intracellular calcium concentration, supporting that ATRA pre‐induction promotes maturation and function of derived neurons but not neuroglia cells from MSCs. Endogenous retinoid X receptors (RXR) RXRα and RXRγ (and to a lesser extent, RXRβ) were weakly expressed in MSCs. But the expression of RARα and RARγ was readily detectable, whereas RARβ was undetectable. However, at 24 h after ATRA treatment, the expression of RARβ, not RARα or RARγ, increased significantly. We further found the subnuclear redistribution of RARβ in differentiated neurons, suggesting that RARβ may function as a major mediator of retinoid signaling during neuronal differentiation from MSCs. ATRA treatment upregulated the expression of Vimentin and Stra13, while it downregulated the expression of Brachyury in MSCs. Thus, our results demonstrate that pre‐activation of retinoid signaling by ATRA facilitates neuronal differentiation of MSCs.  相似文献   

5.
All-trans retinoic acid (ATRA) can down regulate the anti-apoptotic protein Bcl-2 and the cell cycle proteins cyclin D1 and cdk2 in estrogen receptor-positive breast cancer cells. We show here that retinoids can also reduce expression of the inhibitor of apoptosis protein, survivin. Here we have compared the regulation of these proteins in MCF-7 and ZR-75 breast cancer cells by natural and synthetic retinoids selective for the RA receptors (RARs) alpha, beta, and gamma then correlated these with growth inhibition, induction of apoptosis and chemosensitization to Taxol. In both cell lines ATRA and 9-cis RA induced the most profound decreases in cyclin D1 and cdk2 expression and also mediated the largest growth inhibition. The RARalpha agonist, Ro 40-6055 also strongly downregulated these proteins although did not produce an equivalent decrease in S-phase cells. Only ATRA induced RARbeta expression. ATRA, 9-cis RA and 4-HPR initiated the highest level of apoptosis as determined by mitochondrial Bax translocation, while only ATRA and 9-cis RA strongly reduced Bcl-2 and survivin protein expression. Enumeration of dead cells over 96 h correlated well with downregulation of both survivin and Bcl-2. Simultaneous retinoid-mediated reduction of both these proteins also predicted optimal Taxol sensitization. 4-HPR was much weaker than the natural retinoids with respect to Taxol sensitization, consistent with the proposed requirement for reduced Bcl-2 in this synergy. Neither the extent of cell cycle protein regulation nor AP-1 inhibition fully predicted the antiproliferative effect of the synthetic retinoids suggesting that growth inhibition requires regulation of a spectrum of RAR-regulated gene products in addition even to pivotal cell cycle proteins.  相似文献   

6.
Human inducible nitric oxide synthase (hiNOS) catalyzes nitric oxide (NO) which has a significant effect on tumor suppression and cancer therapy. Here we revealed the detailed molecular mechanism involved in the regulation of hiNOS expression induced by retinoic acid (RA). We showed that RARalpha/RXRalpha heterodimer was important in hiNOS promoter activation, hiNOS protein expression, and NO production. Serial deletion and site-directed mutation analysis revealed two half-sites of retinoic acid response element (RARE) spaced by 5bp located at -172 to -156 in the hiNOS promoter. EMSA and ChIP assays demonstrated that RARalpha/RXRalpha directly bound to this RARE of hiNOS promoter. Our results suggested the identification of a novel RARE in the hiNOS promoter and the roles of the nuclear receptors (RARalpha/RXRalpha) in the induction of hiNOS by RA.  相似文献   

7.
8.
9.
Differentiation of embryonic and adult myogenic progenitors undergoes a complex series of cell rearrangements and specification events which are controlled by distinct gene regulatory networks. Delineation of the molecular mechanisms that regulate skeletal muscle specification and formation should be important for understanding congenital myopathies and muscular degenerative diseases. Retinoic acid (RA) signaling plays an important role in development. However, the role of RA signaling in adult myogenic progenitors is poorly understood. Here, we investigate the role of RA signaling in regulating myogenic differentiation of myoblastic progenitor cells. Using the mouse myoblast progenitor C2C12 line as a model, we have found that the endogenous expression of most RAR and RXR isotypes is readily detected. While the nuclear receptor co-repressors are highly expressed, two of the three nuclear receptor co-activators and the enzymes involved in RA synthesis are expressed at low level or undetectable, suggesting that the RA signaling pathway may be repressed in myogenic progenitors. Using the α-myosin heavy chain promoter-driven reporter (MyHC-GLuc), we have demonstrated that either ATRA or 9CRA is able to effectively induce myogenic differentiation, which can be synergistically enhanced when both ATRA and 9CRA are used. Upon ATRA and 9CRA treatment of C2C12 cells the expression of late myogenic markers significantly increases. We have further shown that adenovirus-mediated exogenous expression of RARα and/or RXRα is able to effectively induce myogenic differentiation in a ligand-independent fashion. Morphologically, ATRA- and 9CRA-treated C2C12 cells exhibit elongated cell body and become multi-nucleated myoblasts, and even form myoblast fusion. Ultrastructural analysis under transmission electron microscope reveals that RA-treated myogenic progenitor cells exhibit an abundant presence of muscle fibers. Therefore, our results strongly suggest that RA signaling may play an important role in regulating myogenic differentiation.  相似文献   

10.
11.
All-trans retinoic acid (atRA), a metabolite of vitamin A, is essential for embryonic development. Thus the spatial and temporal dispersal of RA must be tightly controlled. Previous studies show that excessive atRA led to growth inhibition and p21 accumulation in mouse embryonic palatal mesenchymal (MEPM) cells. We reported here the identification of p21 as a required mediator during atRA-induced growth inhibition. atRA caused a G1 arrest in the cell cycle with an increase in the proportion of cells in G0/G1 and a decrease in the proportion of cells in S phase. In addition to a marked effect on cell cycling, atRA also triggered DNA fragmentation, reflected by an increase of the fraction of cells in the sub-G(1) population. Western blot analysis revealed that atRA treatment led to an increase in p21 level and a decrease in cyclin D1 protein and Rb phosphorylation. Using luciferase assay with reporter gene regulated by p21 promoter, we showed that atRA increased the reporter activity in a dose-dependent manner; and p21 siRNA blocked the growth inhibition by atRA, suggesting that p21 is required for atRA-mediated growth inhibition. Moreover, the induction of p21 by atRA was partially attenuated when RAR was silenced with specific siRNA. atRA stimulated RARE-driven reporter gene activity dose-dependently. Using chromatin immunoprecipitation, we demonstrated that RAR protein could bind to the p21 promoter. Taken together, our results indicate p21 is responsible for atRA-induced growth inhibition of MEPM cells and RAR plays a role during this process.  相似文献   

12.
The microtubule associated protein called tau, found primarily in neurons, was detected in a human neuroblastoma cell line, LAN-5. Cells treated with retinoic acid (2.0×105M) differentiate and acquire processes similar to neurons. Differentiated and logarithmically growing undifferentiated cells were exposed to varying doses of doxorubicin (an anthracycline chemotherapeutic antibiotic). While doxorubicin was lethal to many undifferentiated dividing cells, it was not as damaging to differentiated cells. After 2 to 4 days of doxorubicin treatment, the cells were harvested, the protein concentration determined and SDS-PAGE performed. Proteins were blotted onto nitrocellulose paper and immunostained with either a rabbit antiserum or mouse monoclonal antibody to tau. Undifferentiated LAN-5 cells treated with 4.0×10–8M doxorubicin for 4 days and cells treated with 8.0×10–8M doxorubicin for 2 days displayed a distinct lower band (just below the 50kd marker) that was either absent or very faint in untreated controls.Special issue dedicated to Dr. Paola S. Timiras.  相似文献   

13.
We previously demonstrated that endoplasmic reticulum (ER) stress was triggered in human hepatocarcinoma 7721 cells transfected with antisense cDNA of N-acetylglucosaminyltransferase V (GnT-V-AS/7721) which were more susceptible to apoptosis induced by all-trans retinoic acid (ATRA). In the present study, we report that ATRA-induced apoptosis in GnT-V-AS/7721 cells is mediated through ER stress. We show here that ER stress is enhanced in GnT-V-AS/7721 cells with 80 microM ATRA treatment for 24 h, which is evidenced by the increase of GRP78/Bip, C/EBP-homologous protein-10 (CHOP, also known as GADD153) and spliced XBP1. Additionally, activation of caspase-12, caspase-9, and -3 was detected, and apoptosis morphology was observed in GnT-V-AS/7721 cells with ATRA treatment. These results suggest that ATRA enhances the ER stress triggered in GnT-V-AS/7721 cells, which represents a novel mechanism of ATRA to induce apoptosis. We further observed that GnT-V was significantly repressed and the structure of N-glycans was changed in GnT-V-AS/7721 cells with 80 microM ATRA treatment for 24 h, suggesting that repression of GnT-V by ATRA causes the enhanced ER stress and ER stress-mediated apoptosis in GnT-V-AS/7721 cells.  相似文献   

14.
This study examines the effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], 24,25-dihydroxyvitamin D3 [24,25(OH)2D3], two vitamin D analogues (KH 1060 and EB 1089, which are 20-epi-22-oxa and 22,24-diene-analogues, respectively), 9-cis retinoic acid and all-trans retinoic acid on proliferation of SH-SY5Y human neuroblastoma cells, after treatment for 7 days. Cell number did not change when the cells were incubated with 1, 10 or 100 nM 1,25(OH)2D3 or its derivatives, but significantly decreased in the presence of the two retinoids (0.001–10 μM final concentration). A synergistic inhibition was observed, when SH-SY5Y cells were treated combining 0.1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM KH 1060, and 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM EB 1089. Acetylcholinesterase activity showed a significant increase, in comparison with controls, after treatment of the cells for 7 days with 0.1 or 1 μM 9-cis retinoic acid, alone or combined with 10 nM 1,25(OH)2D3 or 10 nM KH 1060 or 10 nM EB 1089. This increase was synergistic, combining 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or EB 1089. The levels of the c-myc encoded protein remarkably decreased after treatment of SH-SY5Y cells for 1, 3, 7 days with 0.1 and 1 μM 9-cis retinoic acid, alone or combined with 10 nM 1,25(OH)2D3 or 10 nM KH 1060 or 10 nM EB 1089. In particular, the association of 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM EB 1089 resulted in a synergistic c-myc inhibition, in comparison with that obtained in the presence of the retinoid alone. These findings may have therapeutic implications in human neuroblastoma.  相似文献   

15.
We have previously reported a novel CD45‐positive cell population called peripheral blood insulin‐producing cells (PB‐IPCs) and its unique potential for releasing insulin in vitro. Despite the CD45‐positive phenotype and self‐renewal ability, PB‐IPCs are distinguished from hemopoietic and endothelial progenitor cells (EPCs) by some characteristics, such as a CD34‐negative phenotype and different culture conditions. We have further identified the gene profiles of the embryonic and neural stem cells, and these profiles include Sox2, Nanog, c‐Myc, Klf4, Notch1 and Mash1. After treatment with all‐trans retinoic acid (ATRA) in vitro, most PB‐IPCs exhibited morphological changes that included the development of elongated and branched cell processes. In the process of induction, the mRNA expression of Hes1 was robustly upregulated, and a majority of cells acquired some astrocyte‐associated specific phenotypes including anti‐glial fibrillary acidic protein (GFAP), CD44, Glutamate‐aspartate transporter (GLAST) and S100β. In spite of the deficiency of glutamate uptaking, the differentiated cells significantly relaxed the regulation of the expression of brain‐derived neurotrophic factor (BDNF) mRNA. This finding demonstrates that PB‐IPCs could be induced into a population of astrocyte‐like cells and enhanced the neurotrophic potential when the state of proliferation was limited by ATRA, which implies that this unique CD45+ cell pool may have a protective role in some degenerative diseases of the central nervous system (CNS).  相似文献   

16.
Cellular retinoic acid binding protein (CRABP) is a member of intracellular lipid-binding protein (iLBP), and closely associated with retinoic acid (RA) activity. We have cloned the CRABP gene from silkworm pupae and studied the interaction between Bombyx mori CRABP (BmCRABP) and all-trans retinoic acid (atRA). The MTT assay data indicated that when BmCRABP is overexpressed in Bm5 cells, the cells dramatically resisted to atRA-induced growth inhibition. Conversely, the cells were sensitive to atRA treatment upon knocking down the BmCRABP expression. Subcellular localization revealed that BmCRABP is a cytoplasm protein, even when treated with atRA, the CRABP still remained in the cytoplasm. These data demonstrated that the function of BmCRABP have an effect on the physiological function of atRA.  相似文献   

17.
18.
In mature cells of the sympathetic nervous system and the adrenal gland, the activity of dihydroxyphenylalanine decarboxylase (DDC) is higher than that of tyrosine hydroxylase and 3,4-dihydroxyphenylalanine (DOPA) does not accumulate in the cells. On the other hand, it is known that in some neuroblastoma cells there is a relative deficiency of DDC, resulting in accumulation and secretion of DOPA. Such a relative deficiency of DDC is a characteristic of neural cells at an early stage of neural crest development, suggesting the neuroblastoma are cells arrested in early neural crest development. If this were the case, it is possible that agents such as retinoic acid (RA) could induce neuroblastoma to differentiate into mature cells with respect to their metabolism of catecholamines. We have measured the effect of RA on the metabolism of DOPA and expression of tyrosine hydroxylase and DDC in human neuroblastoma cell lines, CHP-126, CHP-134, IMR-32, NB-59, and LA-N-5. When the cell cultures were treated with RA, they showed wide variations in response as measured by morphological change, growth inhibition, enzyme activities and DDC, but does not increase DDC relative to tyrosine hydroxylase. It is concluded that RA does not induce biochemical differentiation of the neuroblastoma into mature cells even when there are extensive morphological changes and suppression of growth rate.  相似文献   

19.
20.
BACKGROUND: Platelet-derived growth factor C (PDGF-C) was recently identified as a member of the PDGF ligand family. Some observation suggests that PDGF-C could play an important role in palatogenesis highlighted by the Pdgfc(-/-) mouse with cleft palate, which led us to examine the mechanism of PDGF-C signaling in palatogenesis. It is well known that retinoic acid (RA) is a teratogen that can effectively induce cleft palate in the mouse. Due to the critical roles of PDGF-C and RA in cleft palate, the link between cleft palate induced by RA and loss of PDGF-C was investigated. METHODS: Retarded mesenchymal proliferation is an important cause for cleft palate. To clarify the mechanism of PDGF-C in palatogenesis, we evaluated the effects of PDGF-C and anti-PDGF-C neutralizing antibody on proliferation activity in mouse embryonic palatal mesenchymal (MEPM) cells. RESULTS: Briefly, our results show PDGF-C promotes proliferation, anti-PDGF-C antibody inhibits it in MEPM cells, and RA downregulates the PDGF-C expression both at the mRNA and protein levels. CONCLUSIONS: These demonstrate that PDGF-C is a potent mitogen for MEPM cells, implying that inactivated PDGF-C by gene-targeting or reduced PDGF-C by RA may both cause inhibition of proliferation in palatal shelves, which might account for the pathogenesis of cleft palate in Pdgfc(-/-) mouse or RA-treated mouse. In conclusion, our results suggest that PDGF-C signaling is a new mechanism of cleft palate induced by RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号